Econometrics 2 (2018) TA session 11*

Kenji Hatakenaka ${ }^{\dagger}$

20 December 2018

目次

5 GMM (generalized method of moments) 1
5.1 GMM: linear regression 1
5.2 GMM: non-linear case 2
5.3 Testing hypothesis 3

5 GMM (generalized method of moments)

5.1 GMM: linear regression

When $E[u \mid X] \neq 0, E[u \mid Z]=0, X:(n \times k), Z:(n \times r), r \geq k$, consider the following linear regression model

$$
y=X \beta+u
$$

In this case, multiply Z from left hand side and rewrite the equation as

$$
y^{*}=X^{*} \beta+u^{*}, \quad u^{*} \sim\left(0, \sigma^{2} Z^{\prime} Z\right)
$$

where $y^{*}=Z^{\prime} y, X^{*}=Z^{\prime} X, u^{*}=Z^{\prime} u$. The GMM estimator can be derived by solving the following minimizing problem,

$$
\min _{\beta} u^{*}\left(Z^{\prime} Z\right)^{-1} u^{*}
$$

[^0]From FOC,

$$
\begin{gathered}
\quad \frac{\partial u^{*}\left(Z^{\prime} Z\right)^{-1} u^{*}}{\partial \beta}=0 \\
\Longrightarrow \hat{\beta}_{\mathrm{GMM}}=\left(X^{\prime} P_{Z} X\right)^{-1} X^{\prime} P_{Z} y .
\end{gathered}
$$

where $P_{Z}=Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}$.

5.2 GMM: non-linear case

Consider the case that the moment condition is non-linear;

$$
E\left[h\left(\theta: w_{i}\right)=0\right.
$$

where θ is $k \times 1$ parameter vactor, $w_{i}=\left(y_{i}, x_{i}\right), i=1, \cdots, n$.
Similarly, we can derive GMM estimator by solving follwing minimizing problem

$$
\min _{\theta} q \equiv \bar{g}_{n}^{\prime} S^{-1} \bar{g}_{n}
$$

where $\bar{g}_{n}(\theta: W)=\frac{1}{n} \sum_{i=1}^{n} h\left(\theta: w_{i}\right), S$ is symmetric matrix. From FOC,

$$
\frac{\partial q}{\partial \theta}=2 \frac{\partial \bar{g}_{n}(\theta: W)}{\partial \theta} S^{-1} \bar{g}_{n}=0
$$

To obtain $\hat{\theta}_{\mathrm{GMM}}$, linearize the first-order condition around $\theta=\hat{\theta}_{\mathrm{GMM}}$,

$$
\begin{aligned}
0 & =\frac{\partial \bar{g}_{n}\left(\hat{\theta}_{\mathrm{GMM}}: W\right)}{\partial \theta} s^{-1} \bar{g}_{n}\left(\hat{\theta}_{\mathrm{GMM}}: W\right) \\
& \approx \frac{\partial \bar{g}_{n}(\theta: W)}{\partial \theta} S^{-1}\left(\bar{g}_{n}(\theta: W)+\frac{\partial \bar{g}_{n}(\theta: W)}{\partial \theta^{\prime}}\left(\hat{\theta}_{\mathrm{GMM}}-\theta\right)\right. \\
\Longleftrightarrow \hat{\theta}_{\mathrm{GMM}} & =\theta-\left(\frac{\partial \bar{g}_{n}(\theta: W)}{\partial \theta} S^{-1} \frac{\partial \bar{g}_{n}(\theta: W)}{\partial \theta^{\prime}}\right)^{-1} \frac{\partial \bar{g}_{n}(\theta: W)}{\partial \theta} S^{-1} \bar{g}_{n}(\theta: W)
\end{aligned}
$$

Replacing θ and $\hat{\theta}_{\mathrm{GMM}}$ by $\hat{\theta}^{i+1}$ and $\hat{\theta}^{i}$,

$$
\hat{\theta}^{i+1}=\hat{\theta}^{i}-\left(\hat{D}_{i} S^{-1} \hat{D}_{i}^{\prime}\right)^{-1} \hat{D}_{i} S-1 \bar{g}_{n}\left(\hat{\theta}^{i}: W\right)
$$

where $\hat{D}_{i} \equiv \frac{\bar{g}_{n}\left(\hat{\theta}^{i}: W\right)}{\partial \theta}$.

5.2.1 How to estimate \hat{S} ?

In this case, S is the variance of $\sqrt{n} \bar{g}_{n}(\theta: W)$;

$$
\begin{aligned}
S & =V\left[\sqrt{n} \bar{g}_{n}(\theta: W)\right]=\frac{1}{n} V\left[\sum_{i=1}^{n} h\left(\theta: w_{i}\right)\right] \\
& =\frac{1}{n} E\left[\sum_{i=1}^{n} h\left(\theta: w_{i}\right) \sum_{i=1}^{n} h\left(\theta: w_{i}\right)^{\prime}\right] \\
& =\frac{1}{n}\left\{n \Gamma_{0}+(n-1)\left(\Gamma_{1}+\Gamma_{1}^{\prime}\right)+(n-2)\left(\Gamma_{2}+\Gamma_{2}^{\prime}\right) \cdots+\left(\Gamma_{n-1}+\Gamma_{n-1}\right)\right\} \\
& =\Gamma_{0}+\sum_{i=1}^{n-1}\left(1-\frac{i}{n}\right)\left(\Gamma_{i}+\Gamma_{i}^{\prime}\right)
\end{aligned}
$$

where $\Gamma_{\tau}=E\left[h\left(\theta: w_{i}\right) h\left(\theta: w_{i-\tau}\right)^{\prime}\right]$. The estimator of S is

$$
\hat{S}=\hat{\Gamma}_{0}+\sum_{i=1}^{q-1}\left(1-\frac{i}{q+1}\right)\left(\hat{\Gamma}_{i}+\hat{\Gamma}_{i}^{\prime}\right)
$$

where $q \leq n$

$$
\hat{\Gamma}_{\tau}=\frac{1}{n} \sum_{i=\tau+1}^{n} h\left(\theta: w_{i}\right) h\left(\theta: w_{i-\tau}\right)^{\prime}
$$

5.3 Testing hypothesis

In this subsection, we assume that

1. $\hat{\theta}_{\mathrm{GMM}} \rightarrow \theta$
2. $\sqrt{n} \bar{g}_{n}(\theta: W) \rightarrow N(0, S), S=\lim _{n \rightarrow \infty} V\left[\sqrt{n} \bar{g}_{n}(\theta: W)\right]$

5.3.1 Asymptotic distribution of GMM estimator

$\hat{\theta}_{G M M}$ satisfy

$$
\begin{equation*}
q \equiv \hat{D}^{\prime} \hat{S}^{-1} \bar{g}_{n}\left(\hat{\theta}_{\mathrm{GMM}}: W\right)=0 \tag{1}
\end{equation*}
$$

where

$$
\hat{D}^{\prime} \equiv \frac{\partial \bar{g}_{n}\left(\hat{\theta}_{\mathrm{GMM}}: W\right)^{\prime}}{\partial \theta}
$$

Linearize $\bar{g}_{n}\left(\hat{\theta}_{\mathrm{GMM}}: W\right)$ around $\hat{\theta}_{\mathrm{GMM}}=\theta$ as follows:

$$
\bar{g}_{n}\left(\hat{\theta}_{\mathrm{GMM}}\right)=\bar{g}_{n}(\theta: W)+\frac{\partial \bar{g}_{n}(\bar{\theta}: W)}{\partial \theta^{\prime}}\left(\hat{\theta}_{\mathrm{GMM}}-\theta\right)
$$

where $\bar{\theta}$ is between $\hat{\theta}_{\mathrm{GMM}}$ and θ. (1) can be rewritten as

$$
0=\hat{D}^{\prime} \hat{S}^{-1}\left(\bar{g}_{n}(\theta: W)+\bar{D}\left(\hat{\theta}_{\mathrm{GMM}}-\theta\right)\right)
$$

where

$$
\underset{(r \times k)}{\bar{D}}=\frac{\partial \bar{g}_{n}(\bar{\theta}: W)}{\partial \theta^{\prime}} .
$$

By using assumption 2, asymptotic distribution is

$$
\begin{aligned}
\sqrt{n}\left(\hat{\theta}_{\mathrm{GMM}}-\theta\right) & =\left(\hat{D}^{\prime} \hat{S}^{-1} \bar{D}\right)^{-1} \hat{D}^{\prime} \hat{S}^{-1} \cdot \sqrt{n} \bar{g}_{n}(\theta: W) \\
& \rightarrow N\left(0,\left(D S^{-1} D\right)^{-1}\right)
\end{aligned}
$$

where $\hat{D} \rightarrow D, \bar{D} \rightarrow D, \hat{S} \rightarrow S$ because of $\hat{\theta}_{\mathrm{GMM}} \rightarrow \theta, \bar{\theta} \rightarrow \theta$.

5.3.2 Testing hypothesis

In this subsection, we consider the following hypothesis

- $H_{0}: R(\theta)=0$
- $H_{1}: R(\theta) \neq 0$

By delta method,

$$
R\left(\hat{\theta}_{\mathrm{GMM}}\right)=R(\theta)+R_{\bar{\theta}}\left(\hat{\theta}_{\mathrm{GMM}}-\theta\right)
$$

where

$$
R_{\bar{\theta}} \equiv \frac{\partial R(\bar{\theta})}{\partial \theta^{\prime}},
$$

$\bar{\theta}$ is between θ and $\hat{\theta}_{\mathrm{GMM}}$. Asymptotic distribution of $\sqrt{n}\left(R\left(\hat{\theta}_{\mathrm{GMM}}\right)-R(\theta)\right)$ is

$$
\begin{aligned}
\sqrt{n}\left(R\left(\hat{\theta}_{\mathrm{GMM}}\right)-R(\theta)\right) & =R_{\bar{\theta}} \sqrt{n}\left(\hat{\theta}_{\mathrm{GMM}}-\theta\right) \\
& \rightarrow N\left(0, R_{\theta}\left(D^{\prime} S^{-1} D\right)^{-1} R_{\theta}^{\prime}\right)
\end{aligned}
$$

because $R_{\bar{\theta}} \rightarrow R_{\theta}$ as $\hat{\theta}_{\mathrm{GMM}} \rightarrow \theta$. So we have following distribution.

$$
n \cdot\left(R\left(\hat{\theta}_{\mathrm{GMM}}\right)-R(\theta)\right)^{\prime}\left(R_{\hat{\theta}_{\mathrm{GMM}}}\left(\hat{D}^{\prime} \hat{S}^{-1} \hat{D}\right)^{-1}\right)\left(R\left(\hat{\theta}_{\mathrm{GMM}}\right)-R(\theta)\right) \rightarrow \chi^{2}(p)
$$

Under $H_{0}: R(\theta)=0$, the test statistic is

$$
n \cdot\left(R\left(\hat{\theta}_{\mathrm{GMM}}\right)\right)^{\prime}\left(R_{\hat{\theta}_{\mathrm{GMM}}}\left(\hat{D}^{\prime} \hat{S}^{-1} \hat{D}\right)^{-1}\right)\left(R\left(\hat{\theta}_{\mathrm{GMM}}\right)\right) \rightarrow \chi^{2}(p)
$$

[^0]: * All comments welcome!
 † E-mail: u626530i@ecs.osaka-u.ac.jp, Room 501

