TA session 2# 9

Jun Sakamoto

January 10,2019

Contents

1 GMM linear model 1

2 GMM non linear model

1 GMM linear model

Consider the following model.

$$Z'y = Z'X\beta + Z'u \tag{1}$$

6

where Z, y, X, β and u are $n \times r, n \times 1, n \times k, k \times 1$ and $n \times 1$ matrices and vectors, and $r \ge k$. Rewrite the above regression as follows

$$y^* = X^*\beta + u^* \tag{2}$$

where $y^* = Z'y, X^* = Z'X$ and $u^* = Z'u$. Then,

$$E(u^*) = 0, V(u^*) = \sigma^2 Z' Z = \sigma^2 \Omega$$
(3)

GMM estimator is obtained by using GLS, that is,

$$\beta_{GMM} = (X^{*'} \Omega^{-1} X^{*})^{-1} X^{*'} \Omega^{-1} y^{*}$$
$$= (X' Z (Z'Z)^{-1} Z'X)^{-1} X' Z (Z'Z)^{-1} Z' y$$
(4)

Let us assume the following condition,

$$\frac{1}{n}Z'Z \to_p M_{zz} < \infty$$

$$\frac{1}{n}Z'X \to_p M_{zx} < \infty$$

$$\frac{1}{n}Z'u \to_p 0$$
(5)

Under those assumptions, GMM estimator is consistent. Thus,

$$\begin{aligned} \beta_{GMM} &= (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'y \\ &= (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'(X\beta + u) \\ &= \beta + (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'u \\ &= \beta + (\frac{1}{n}X'Z(\frac{1}{n}Z'Z)^{-1}\frac{1}{n}Z'X)^{-1}\frac{1}{n}X'Z(\frac{1}{n}Z'Z)^{-1}\frac{1}{n}Z'u \\ &\to_{p}\beta + (M_{zx}M_{zz}^{-1}M_{zx})^{-1}M_{zx}M_{zz}^{-1} \times 0 = \beta \end{aligned}$$
(6)

By the same logic of IV method,

$$\sqrt{n}(\beta_{GMM} - \beta) = \left(\frac{1}{n}X'Z(\frac{1}{n}Z'Z)^{-1}\frac{1}{n}Z'X\right)^{-1}\frac{1}{n}X'Z(\frac{1}{n}Z'Z)^{-1}\frac{1}{\sqrt{n}}Z'u
\rightarrow N(0, \sigma^2(M_{zx}M_{zz}^{-1}M_{zx})^{-1})$$
(7)

In practice, we use the following distribution.

$$\beta_{GMM} \sim N(\beta, s^2 (X'Z(Z'Z)^{-1}Z'X)^{-1})$$
(8)

where $s^2 = \frac{1}{n-k}(y - X\beta_{GMM})'(y - X\beta_{GMM})$

Empirical Example1 Hayashi's textbook pp.250. Consider the wage equation

$$LW = \beta S + \gamma IQ + \delta h + e \tag{9}$$

where LW is log wages, S is schooling, and h is control variables. Estimate the wage equation by GMM. 3results are characterized by below.

1. Schooling is exogenous variable and weighting matrix is $(Z'Z)^{-1}$

2. Schooling is exogenous variable and weighting matrix which considered heteroscedasticity

3. Schooling is endogenous variable and weighting matrix which considered heteroscedasticity

Estimating by RATS. Result1

Linear Regression - Estimation k	y GMM
Dependent Variable LW	
Usable Observations	758
Degrees of Freedom	745
Mean of Dependent Variable	5.6867387863
Std Error of Dependent Variable	0.4289493543
Standard Error of Estimate	0.3302676854
Sum of Squared Residuals	81.262174293
J-Specification(3)	74.1649
Significance Level of J	0.000000
Durbin-Watson Statistic	1.7208

	Variable	Coeff	Std Error	T-Stat	Signif
***	***************	***************	*********	*********	********
1.	S	0.076835442	0.013185921	5.82708	0.0000001
2.	IQ	-0.001401432	0.004113143	-0.34072	0.73331404
3.	EXPR	0.031233938	0.006693110	4.66658	0.0000306
4.	TENURE	0.048999777	0.007343684	6.67237	0.00000000
5.	RNS	-0.100681117	0.029588671	-3.40269	0.00066726
6.	SMSA	0.133597277	0.026324545	5.07501	0.0000039
7.	¥66	4.436784464	0.289950362	15.30188	0.00000000
8.	¥67	4.415770982	0.293999764	15.01964	0.00000000
9.	Y68	4.525883796	0.286858823	15.77739	0.00000000
10.	¥69	4.644032862	0.296708747	15.65182	0.00000000
11.	¥70	4.670615269	0.309123900	15.10920	0.00000000
12.	Y71	4.671336935	0.302109595	15.46239	0.00000000
13.	¥73	4.772811156	0.302499921	15.77789	0.0000000

Result2

Lin	ear Regression - Estimation b	y Instrumental	Variables		
Wit	h Heteroscedasticity/Misspeci	fication Adjus	ted Standard	Errors	
Dep	endent Variable LW				
Usa	ble Observations	758			
Deg	rees of Freedom	745			
Mea	n of Dependent Variable	5.6867387863			
Std	Error of Dependent Variable	0.4289493543			
Sta	ndard Error of Estimate	0.3302676854			
Sum	of Squared Residuals	81.262174293			
J-S	pecification(3)	71.5752			
Sig	mificance Level of J	0.0000000			
Dur	bin-Watson Statistic	1.7208			
	Variable	Coeff	Std Error	T-Stat	Signif
***	*****	***********	**********	***********	**********
1.	S	0.076835442	0.013296885	5.77845	0.0000001
2.	IQ	-0.001401432	0.004155593	-0.33724	0.73593599
з.	EXPR	0.031233938	0.006728753	4.64186	0.0000345
4.	TENURE	0.048999777	0.007419060	6.60458	0.00000000
5.	RNS	-0.100681117	0.029911276	-3.36599	0.00076269
6.	SMSA	0.133597277	0.026589325	5.02447	0.0000050
7.	¥66	4.436784464	0.293344054	15.12485	0.00000000
8.	¥67	4.415770982	0.297636143	14.83614	0.00000000
9.	¥68	4.525883796	0.290049068	15.60386	0.00000000
10.	¥69	4.644032862	0.300356739	15.46172	0.00000000
11.	¥70	4.670615269	0.312069317	14.96660	0.00000000
12.	¥71	4.671336935	0.305381496	15.29673	0.00000000
13.	¥73	4.772811156	0.305920948	15.60145	0.00000000

Result3

Lir	near Regression - Estimation b	y Instrumental	Variables		
Wit	th Heteroscedasticity/Misspeci	fication Adjus	ted Standard	Errors	
Deg	endent Variable LW				
Usa	able Observations	758			
Deg	grees of Freedom	745			
Mea	an of Dependent Variable	5.6867387863			
Sto	i Error of Dependent Variable	0.4289493543			
Sta	andard Error of Estimate	0.3853599722			
Sun	n of Squared Residuals	110.63421957			
J-S	Specification(2)	11.2947			
Sig	nificance Level of J	0.0035269			
Dua	bin-Watson Statistic	1.8032			
	Variable	Coeff	Std Error	T-Stat	Signif
***	******	***********	**********	***********	*********
1.	S	0.176980773	0.020966861	8.44098	0.0000000
2.	IQ	-0.010049394	0.004953785	-2.02863	0.04249603
3.	EXPR	0.048729196	0.008180713	5.95659	0.0000000
4.	TENURE	0.042330673	0.009630671	4.39540	0.00001106
5.	RNS	-0.105322483	0.033960937	-3.10128	0.00192684
6.	SMSA	0.124568446	0.031222519	3.98970	0.00006616
7.	Y66	4.069138570	0.339509669	11.98534	0.0000000
8.	¥67	4.019250991	0.344587276	11.66396	0.0000000
9.	Y68	4.113533133	0.337028355	12.20530	0.0000000
10.	Y69	4.214657968	0.350230931	12.03394	0.0000000
11.	¥70	4.232791698	0.362089659	11.68990	0.0000000
12.	Y71	4.169772647	0.356916670	11.68276	0.0000000
13.	Y73	4.175477510	0.360696265	11.57616	0.0000000

Empirical Example2 "How does the European Central Bank react to oil prices?" Guillaume and Julien Licheron Economics Letters 116,pp445-447

We investigate the potential transmission effect of monetary policy in the Economic and Monetary Union (EMU) from an empirical point of view. An extended Taylor rule to evaluate the sensitivity of the European Central Bank (ECB) to oil price fluctuations is estimated with GMM. We construct several indicators of oil prices to assess whether the effect of oil prices in the ECB interest-rate setting process is asymmetric and/or nonlinear.

Their model relies on a Taylor rule to describe the behaviour of Central Banks.

$$i_t^* = \bar{i}_t + \beta(\pi_t - \pi^*) + \gamma(y_t - y^*)$$
(10)

where i_t is the equilibrium nominal interest rate, π_t is the inflation rate, y_t is the output growth rate. π^* and y^* are target rate.

They added smoothing parameter ρ and change of oil price. Then, their estimate equation is

$$i_t = \alpha_1 + \alpha_2 i_{t-1} + \alpha_3 (\pi_t - \pi^*) + \alpha_4 (y_t - y^*) + \alpha_5 \Delta o_t + e_t$$
(11)

Table 1	
Estimation	results.

stimation results.					
	[1]	[2]	[3]	[4]	[5]
Constant	3.357	0.144	0.081	0.082	0.067
	(0.089)	(0.051)	(0.049)	(0.050)	(0.067)
i1	(0.960	0.975	0.964	0.976
4-1		(0.016)	(0.015)	(0.018)	(0.020)
$(\pi, -\pi^*)$	1.956	0.107	0.121	0.176	0.142
(11)	(0.291)	(0.074)	(0.064)	(0.081)	(0.080)
$(v_{t} - v_{t}^{*})$	0.383	0.235	0.195	0.211	0.203
(f_t)	(0.220)	(0.042)	(0.037)	(0.040)	(0.055)
۸٥.	(01220)	(010 12)	0.0012	(01010)	(01000)
			(0.0003)		
Δa^+			(0.0005)	0.0022"	
Zot				(0.001)	
Δa^{-}				-0.0025	
Δ0 _t				(0.002)	
NOPI				(0.005)	0.0211
inon i					(0.009)
NOPD					0.0067
norb					(0.009)
Implied					(0.005)
coefficients					
0	_	0.960	0.975	0.964	0.976
В	1.956	2.675	4.840	4.889	5.917
Y	0.383	5.875	7.800	5.861	8.458
λ	-	-	0.048	-	-
λ^+	-	-	-	0.061	0.879
λ^{-}	-	-	_	-0.069	0.279
Observations	117	118	118	118	118
Adjusted R2	0.117	0.980	0.982	0.979	0.976
Hansen J-test	20.325	3.093	7.082	5.658	5.282
P-value	[0.000]	[0.378]	[0.132]	[0.130]	[0.152]

2 GMM non linear model

Now, let us consider the general case of orthogonality condition such that

$$E[h(\theta; w)] = 0 \tag{12}$$

where θ is a $k \times 1$ vector of parameter. $h(\theta; w)$ is a $r \times 1$ vector for $r \geq k$. Let $w_i = (y_i, x_i)$ be the *i*th observed data. Define $g(\theta; w)$ as

$$g(\theta; w) = \frac{1}{n} \sum_{i=1}^{n} h(\theta; w)$$
(13)

where $w = w_1, w_2, ..., x_n$. In the same way as the GMM estimator in linear case, we define the GMM estimator $\hat{\theta}$, which minimizes

$$g(\theta; w)' W_n g(\theta; w) \tag{14}$$

with respect to θ . Let us consider the asymptotic distribution of GMM estimator in general case under two assumption holds, that is

Assumption 1:
$$\theta \to \theta$$

Assumption 2: $\sqrt{ng}(\theta; w) \to N(0, S)$

where

$$S = \lim_{n \to \infty} V(\sqrt{n}g(\theta; w)) \tag{15}$$

The first order condition of GMM is

$$\frac{\partial g(\theta; w)'}{\partial \theta} W_n g(\theta; w) = 0 \tag{16}$$

The GMM estimator, denoted by $\hat{\theta}$, satisfies the above equation. Therefore, we have the following

$$\frac{\partial g(\hat{\theta}; w)'}{\partial \theta} W_n g\hat{\theta}; w) = 0 \tag{17}$$

Using the Theorem of Mean Value, linearized $g(\theta; w)$ around $\hat{\theta} = \theta$ can be written as follows

$$g(\hat{\theta}; w) = g(\theta; w) + \frac{\partial g(\bar{\theta}; w)'}{\partial \theta} (\hat{\theta} - \theta)$$

= $g(\theta; w) + \bar{D}(\hat{\theta} - \theta)$ (18)

where $\bar{D} = \frac{\partial g(\bar{\theta};w)'}{\partial \theta}$, and $\bar{\theta}$ is between $\hat{\theta}$ and θ . Substituting the linear approximation at $\hat{\theta} = \theta$, we obtain

$$0 = \hat{D}' W_n g(\hat{\theta}; w)$$

= $\hat{D}' W_n (g(\theta; w) + \bar{D}(\hat{\theta} - \theta))$
= $\hat{D}' W_n g(\theta; w) + \hat{D}' W_n \bar{D}(\hat{\theta} - \theta)$ (19)

which can be written as

$$\hat{\theta} - \theta = -(\hat{D}'W_n\bar{D})^{-1}\hat{D}'W_ng(\theta;w)$$
⁽²⁰⁾

From Assumption 1, $\hat{\theta} \to \theta$ implies $\bar{\theta} \to \theta$. Therefore,

$$\sqrt{n}(\hat{\theta} - \theta) = -(\hat{D}'W_n\bar{D})^{-1}\hat{D}'W_n \times \sqrt{n}g(\theta; w)$$
(21)

Assuming $W_n \to W$, the GMM estimator $\hat{\theta}$ has the following asymptotic distribution

$$\sqrt{n}(\hat{\theta} - \theta) \to N(0, (D'WD)^{-1}D'WSWD(D'WD)^{-1})$$
(22)

Note that $\hat{D} \to D, \bar{D} \to D$, and assumption 2 are utilized. If we set the weighting matrix $W_n \to W = S^{-1}$, then this expression can be simplified as

$$\sqrt{n}(\hat{\theta} - \theta) \to N(0, (D'S^{-1}D)^{-1})$$
(23)

Let us discuss how to obtain consistent estimator of S. If $h(\theta; w_i), i = 1, ..., n$, are mutually independent, S is

$$S = V(\sqrt{ng}(\theta; w)) = nE(g(\theta; w)g(\theta; w)')$$

= $nE((\frac{1}{n}\sum_{i=1}^{n}h(\theta; w_i))(\frac{1}{n}\sum_{i=1}^{n}h(\theta; w_i))')$
= $\frac{1}{n}\Sigma\Sigma E(h(\theta; w_i)h(\theta; w_j)')$
= $\frac{1}{n}\Sigma E(h(\theta; w_i)h(\theta; w_i))$ (24)

Note that

- 1. $E(h(\theta; w_i)) = 0$ for all *i* and accordingly $E(g(\theta; w)) = 0$
- 2. $g(\theta; w) = \frac{1}{n} \sum_{i=1}^{n} h(\theta; w_i) = \frac{1}{n} \sum_{j=1}^{n} h(\theta; w_j)$ 3. $E(h(\theta; w_i)h(\theta; w_j)') = 0 \text{ for } i \neq j$

The estimator of S, denote by \hat{S} is given by

$$\hat{S} = \frac{1}{n} \sum_{i=1}^{n} h(\hat{\theta}; w_i) h(\hat{\theta}; w_i)' \to S$$
(25)