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Aim(目的)

• Review the previous lectures with some additional contents.

• Introduce an empirical example of probit.

2 Qualitative Variable or Quantitative Variable

In most cases, dependent variable is continuous or assumed to be continuous.

For example,

• temperature

• individual income

→ yi is continuous and −∞ < yi < ∞.

However, we may encounter some variables which takes only several value.

For example,

• male or female

• smoking or not smoking

→ yi = 0 or 1.

∗ All comments welcome!
† E-mail: u626530i@ecs.osaka-u.ac.jp, Room 501
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In this section, we learn the case these variables are dependent variable.

2.1 Discrete Choice Model(離散選択モデル)

2.1.1 Binary Choice Model

This model is represented by

y∗i = Xiβ + ui ui ∼ (0, σ2), i = 1, 2, . . . n. (1)

where y∗ is unobserved, but yi is observed as 0 or 1,

yi =

{
1, if y∗i > 0,

0, if y∗i ≤ 0.
(2)

Consider the probability that yi takes 1, i.e.

P (yi = 1) = P (y∗i > 0) = P (ui > −Xiβ)

= P

(
ui

σ
> −Xi

β

σ

)
= P (u∗

i > −Xiβ
∗)

= 1− P (u∗
i ≤ −Xiβ

∗) = 1− F (−Xiβ
∗) = F (Xiβ

∗) (3)

where u∗
i and β∗are defined as

u∗
i =

ui

σ
, β∗ =

β

σ
(4)

The last equality of (3) comes from the symmetry of distribution u∗
i . Note

that we estimate β∗, but we cannot estimate β and σ separately. The distribution

function is defined as follows:

F (x) =

∫ x

−∞
f(z)dz (5)

2.1.2 Difference between Probit and Logit

Here, we shortly review the difference between probit and logit. The difference

is below:

2



• Probit → u∗
i is standard normal distribution, i.e., u∗

i ∼ N(0, 1)

F (x) =

∫ x

−∞

1
√
2π

exp

(
−
1

2
z2

)
dz, f(x) =

1
√
2π

exp

(
−
1

2
z2

)
. (6)

• Logit → u∗
i is logistic distribution,

F (x) =
1

1 + exp(−x)
, f(x) =

exp(−x)

(1 + exp(−x))2
(7)

We can also consider the other distribution function for u∗
i . For example, we

sometime encounter Gumbel distribution.

2.2 Likelihood Function

yi is the following Bernouli distribution f(yi) as follows:

f(yi) = (P (yi = 1))yi(1− P (yi = 0))1−yi , yi = 0, 1, (8)

= (F (Xiβ
∗))yi(1− F (Xiβ

∗))1−yi (9)

Then we obtain the likelihood function as follows:

L(β∗) = f(y1, y2, . . . , yn) =

n∏
i=1

f(yi) =

n∏
i=1

(F (Xiβ
∗))yi(1− F (Xiβ

∗))1−yi .

(10)

Then log-likelihood function is :

logL(β∗) =
n∑

i=1

{yi logF (Xiβ
∗) + (1− yi) log(1− F (Xiβ

∗))} (11)

Solving the maximization problem of logL(β∗) with respect to β∗, the FOC is:

∂L(β∗)

∂β∗ =
n∑

i=1

(
yiX

′
if(Xiβ

∗)

F (Xiβ∗)
−

(1− yi)X
′
if(Xiβ

∗)

1− F (Xiβ∗)

)
(12)

=
n∑

i=1

X ′
if(Xiβ

∗)(yi − F (Xiβ
∗))

F (Xiβ∗)(1− F (Xiβ∗))
= 0 (13)
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SOC is

∂2 logL(β∗)

∂β∗∂β∗′ =

n∑
i=1

X ′
iXif

′
i(yi − Fi)

Fi(1− Fi)
−

n∑
i=1

X ′
iXif

2
i

Fi(1− Fi)
(14)

−
n∑

i=1

X ′
ifi(yi − Fi)

Xifi(1− 2Fi)

(Fi(1− Fi))2
(15)

(15) is negative definite. When we adopt Logit model, we can calculate further.

∂L(β∗)

∂β∗ =
n∑

i=1

X ′
if(Xiβ

∗)(yi − F (Xiβ
∗))

F (Xiβ∗)(1− F (Xiβ∗))
(16)

=

n∑
i=1

X ′
i

exp(−Xiβ
∗)

(1 + exp(−Xiβ∗))2

(
yi −

1

1 + exp(−Xiβ∗)

)
1

1 + exp(−Xiβ∗)

exp(−Xiβ)

1 + exp(−Xiβ∗)

(17)

=

n∑
i=1

X ′
i

(
yi −

1

exp(−Xiβ∗)

)
= 0. (18)

For maximization, the method of scoring is given by

β∗(j+1) = β∗(j) +

(
n∑

i=1

X ′
iXi(f

(j)
i )2

F
(j)
i (1− F

(j)
i )

)−1 n∑
i=1

X ′
if

(j)
i (yi − F

(j)
i )

F
(j)
i (1− F

(j)
i )

. (19)

Variance of MLE β̂∗ is I(β̂∗)−1 where

I(β̂∗) = −E

[
∂2 logL(β̂∗)

∂β∗∂β∗′

]
=

n∑
i=1

X ′
iXif̂

2
i

F̂i(1− F̂i)
. (20)

We can estimate β̂∗ and test the significance of β̂∗.

2.3 Another Interpretation

This maximization problem is equivalent to the nonlinear least squares esti-

mation problem from the following regression model:

yi = F (Xiβ
∗) + ui (21)
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where

ui = yi − Fi =

{
1− Fi w.p. P (yi = 1)
0− Fi w.p. P (yi = 0)

(22)

Therefore, the mean and variance of ui are:

E(ui) = (1− Fi)︸ ︷︷ ︸
value

Fi︸︷︷︸
prob.

+(−Fi)︸ ︷︷ ︸
value

(1− Fi)︸ ︷︷ ︸
prob.

= 0 (23)

σ2
i = V (ui) = E[u2

i − E(ui)
2] = E(u2

i ) (24)

= (1− Fi)
2︸ ︷︷ ︸

value

Fi︸︷︷︸
prob.

+(−Fi)
2︸ ︷︷ ︸

value

(1− Fi)︸ ︷︷ ︸
prob.

= Fi(1− Fi). (25)

Then the weighted least squares method solves the following minimization prob-

lem:

min
β∗

n∑
i=1

(yi − F (Xiβ
∗))2

σ2
i

(26)

Then, the first order condition becomes:

n∑
i=1

2X ′
if(Xiβ

∗)(yi − F (Xiβ
∗))

σ2
i

= 0 (27)

This is equivalent to the first order condition of MLE.

2.4 example1 and 2

2.4.1 Random Utility Model

U1,i = Xiβ1,i + ϵ1,i, U2,i = Xiβ2,i + ϵ2,i (28)

We can observe

yi =

{
1 if U1,i > U2,i

0 if U1,i ≤ U2.i
(29)
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The latent equation is

y∗i = Xiβ + ϵi (30)

where

y∗i ≡ U1,i − U2,i (31)

β ≡ β1 − β2 (32)

2.4.2 questionnaire(アンケート)

yi = F (Xiβ) + ϵi (33)

yi =

{
1 yes
0 no

(34)

F (·) is a distribution function of ϵi(ex. normal dist, logistic dist) where

E[yi] = P (yi = 1) = F (Xiβ) (35)

Likelihood function is

L(β) =

n∏
i=1

f(yi) (36)

=
n∏

i=1

F yi

i (1− Fi)
1−yi (37)

where f(yi) is (35). → MLE

2.4.3 Ordered Probit or Logit Model

Ordered Probit or Logit Model is the case yi is observed as 1, 2, . . . ,m.

yi =


1 y∗i < a1
2 a1 ≤ y∗i < a2
...
m am−1 ≤ y∗i

(38)
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Probability density function of yi is

f(yi) = (P (yi = 1))I{i=1}(P (yi = 2))I{i=2} · · · (P (yi = m))I{i=m} ,

where

P (yi = j) = P (aj−1 ≤ y∗i < aj)

= P (y∗i < aj)− P (y∗i < aj−1)

= P (ui < aj −Xiβ)− P (ui < aj−1 −Xiβ)

= F (aj −Xiβ)− F (aj−1 −Xiβ)

I{i=j} =

{
1 if yi = j
0 otherwise

for j = 1, 2, · · · ,m. a0 = −∞, am = ∞.

So Likelihood function:

L(β) =

n∏
i=1

f(yi) (39)

can be constructed. → MLE

2.4.4 Multinomial logit model

This model is unorderd choice model(ex. yi = 1(menial), 2(blue collar), 3(white

collar, 4(professional)). The individual has m+ 1 choices, i.e. j = 0, 1, 2, · · · ,m

P (yi = j) =
exp(Xiβj)∑m
j=0 exp(Xiβj)

= Pij (40)

for β0 = 0(The case of m = 1 correspond to bivariate logit model).

Note that

log
Pij

Pi0
= Xiβj . (41)

The log likelihood function is

logL(β1, β2, · · · , βm) =
n∑

i=1

m∑
j=0

I{yi=j}logPij (42)
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2.5 Marginal effect(“When xi increase by 1%, how much yi would

increase?” )

When we employ OLS method (y = x1β1 + · · ·+ xkβk + ϵ), marginal effect is

“βi%”. When we conduct probit or logit estimation, the result is not straight-

forward. The model is represented as follows:

y∗i = P (yi = 1) + ui = F (Xiβ
∗) + ui. (43)

By differentiating this equation by Xik, kth independent variable of individual

i, we obtain

dP (yi = 1)

dXik
=

dF (Xiβ
∗)

dXik
= β∗

kf(Xiβ
∗). (44)

Where f(Xiβ
∗) is probability density function of Xiβ.
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