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1 Nested Logit Model

A discrete choice model that does not possess the independence of irrelevant alternative (IIA) property is the
nested logit model.

IIA property

P (y = j|B, s)

P (y = i|B, s)
=

P (y = j|{i, j}, s)
P (y = i|{i, j}, s)

(1)

where B is the choice set and s is the attribute. This assumption means the odds between i and j does not
depend on the third alternatives.
By the assumption, the probability of i choice is

1 =

J∑
j=0

P (y = j|B, s) = (

J∑
j=0

P (y = j|{i, j}, s)
P (y = j|{i, j}, s)

)P (y = i|B, s) (2)

Suppose the odds ratio be

P (y = j|{i, j}, s)
P (y = j|{i, j}, s)

= exp(Xβj −Xβi) (3)
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Then

P (y = j|B, s) =
exp(Xβj)

1 + exp(Xβi)
(4)

When the IIA assumption is considered inappropriate, the alternative model is proposed such as a nested
logit model.
For this model, the set of possible choices is decomposed into subset. See an example.

”Alternative models of demand for automobiles” Charlotte Wojcik (2000) Economic letters 68,113-118
We consider deciding to buy a car. In this situation, we decides by three steps. 1st, we choose the class of car
(small, standard, luxury / sports, or the outside alternative of not buying a new car), 2nd the country of origin
(domestic, European, or Japanese /Korean), and finally the specific model.
The following is the variable list.
SHAREjt: the market share (taking account of the outside alternative) of model j;

SHARE0t: the market share of the outside alternative in year t;
PRICEjt: the retail list price of the base model, in thousands of 1983 dollars;
INCOMEt: the average household income plus the simulated deviation in year t;
HP/WTjt: horsepower per 10 lbs of vehicle weight;
AIRjt: a dummy for whether air conditioning is standard;
MPDOLjt: MPG (in tens) divided by the retail price of unleaded gas;
LN3WDjt: length 3 width, in units of 10,000 square inches;

Result is as bellow.
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Also, calculation result of share probability is

2 Truncated Regression Model

Suppose that yi and xi is satisfying following linear regression model.

yi = x′
iβ + ui, ui ∼ N(0, σ2) (5)

where yi is iid dependent variable and xi ∈ Rk is explanatory variable. We will consider follow ing simple
truncation rule.

(yi, xi) =

{
observable if yi > c
unobservable if yi < c

}
(6)

In this case, this rule is often called a truncation from below. Next, the distribution after the truncation
y > c is defined over the interval (c,∞) and given by this

f(y|y > c) =
f(y)

P (y > c)
(7)

where f(y|g) means the conditional distribution of y given x. Suppose that y ∼ N(µ, σ2) the mean and
variance of the truncated distribution are
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E[y|y > c] = µ+ σλ(v) (8)

V [y|y > c] = σ2{1− λ(v)[λ(v)− v]} (9)

v =
c− µ

σ
(10)

λ(v) =
ϕ(v)

1− Φ(v)
(11)

where ϕ and Φ mean the pdf and the cdf of the standard normal distribution function respectively. We
sometimes call λ(v) inverse Mill’s ratio and hazard function. Clearly above equation shows that the mean of
the truncated distribution is not µ but µ+ σλ(v). That is it has sample selection bias. By using above results,
we can get following results for the linear regression model.

E[yi|xi] = x′
iβ + σλ(

c− x′
iβ

σ
) (12)

V [y|xi] = σ2{1− λ(
c− x′

iβ

σ
)[λ(

c− x′
iβ

σ
)− c− x′

iβ

σ
]} (13)

for if and only if yi > c. In this case, the OLSE has bias. Because

E[β̂] = E[(X ′X)−1X ′y] (14)

= (
∑
i

xix
′
i)

−1
∑
i

xiE[yi] (15)

= (
∑
i

xix
′
i)

−1
∑
i

xi[µ+ σλ(vi)] (16)

= (
∑
i

xix
′
i)

−1
∑
i

xi[x
′
iβ + σλ(

c− x′
iβ

σ
)] (17)

= β + σ(
∑
i

xix
′
i)

−1
∑
i

xiλ(vi) (18)

holds. Therefore the OLSE has bias. So we use MLE.

3 Tobit Model

Suppose that yi and xi is satisfying following linear regression model.

y∗i = x′
iβ + ui, ui ∼ N(0, σ2) (19)
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where yi is iid dependent variable and xi ∈ Rk is explanatory variable. We will consider the following
censoring.

(yi, xi) =

{
y∗i if y∗i > c
c if y∗i ≤ c

}
(20)

that is

yi = max{x′
iβ + ui, c} (21)

This model called Tobit model. Unlike in truncated model, there is no truncation here. The feature that
distinguishes the cenored regression model from usual regression model is that the dependent variable is censored.
For the observations that satisfy y∗i > c, its density is given by

σ−1ϕ(
yi − x′

iβ

σ
) (22)

Because there is no truncation, this density differs from the density for the truncated model in this case.
For the observations which satisfy y∗i ≤ c, the probability of which is given by

P (y∗i ≤ c|xi) = P (
y∗i − x′

iβ

σ
≤ c− x′

iβ

σ
|xi) (23)

= Φ(
c− x′

iβ

σ
) (24)

Combining these two results. We can get

[σ−1ϕ(
yi − x′

iβ

σ
)]Ii × [Φ(

c− x′
iβ

σ
)]1−Ii (25)

Ii =

{
1 if y∗i > c
0 if y∗i ≤ c

}
(26)

Taking logs, we obtain the log conditional likelihood for the observation i = 1, 2, ...

l(β, σ2) =
∑
i

Iilog[σ
−1ϕ(

yi − x′
iβ

σ
)] +

∑
i

(1− Ii)logΦ(
c− x′

iβ

σ
) (27)
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which implies

l(β, σ2) = n−1
∑
i

log[σ−1ϕ(
yi − x′

iβ

σ
)] + n−1

∑
i

logΦ(
c− x′

iβ

σ
) (28)

Empirical example

Check estimate of OLS and Tobit regression.
First we check scatter plot of {yi, xi} and {y∗i , xi}.
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{y∗i , xi}

{yi, xi}

1.We generate samples X ∼ U [−100, 100] and u ∼ N(0, 5).(t=50)
2.y is made by X and u from step1.(We assume true beta is 1)

3.We estimate β̂OLS and β̂TR.
4.β̂ is obtained by repeating above steps 1000 times.

Distribution of there estimate are

7



8


