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Aim(目的)

• Review the previous lectures with some additional contents.

• Introduce an empirical example of the Poisson Model.

1 Count Data Model

As far, yi = 0 or 1. However, sometimes we are interested in how many times an event

occurs (e.g. traffic accidents). In this section, yi = 0, 1, 2, . . ..

1.1 Poisson Count Data Model

Consider the following Poisson distribution:

P (X = x) = f(x) =
e−λλx

x!
for x = 0, 1, 2, . . . . (1)

This Poisson distribution is obtained as a limit of binomial distribution(二項分布). Con-

sider that an event happens with probability p = λ/n, and we consider the probability

of the number of the event happens as follows:

P (X = x) =
n!

(n− x)!x!
px(1− p)n−x =

n!

(n− x)!x!

(
λ

n

)x(
1−

λ

n

)n−x

. (2)

∗ All comments welcome!
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Then, we can transform the equation as follows:

P (X = x) =

x times multiplied︷ ︸︸ ︷
n× (n− 1)× · · · × (n− x+ 1)

x!

λx

nx

(
1−

λ

n

)n(
1−

λ

n

)−x

(3)

=
n

n

(n− 1)

n

(n− 2)

n
· · ·

(n− x+ 1)

n

λx

x!

(
1−

λ

n

)n(
1−

λ

n

)−x

. (4)

By taking limit with n, with sustaining p = λ/n, we obtain

lim
n→∞

P (X = x) = lim
n→∞

n

n︸︷︷︸
1

(n− 1)

n︸ ︷︷ ︸
1

· · ·
(n− x+ 1)

n︸ ︷︷ ︸
1

λx

x!

(
1−

λ

n

)n

︸ ︷︷ ︸
e−λ

(
1−

λ

n

)−x

︸ ︷︷ ︸
1

. (5)

P (X = x) =
λxe−λ

x!
(6)

Expectation of this distribution is

E(X) =

∞∑
x=0

x
e−λλx

x!
=

∞∑
x=1

x
e−λλx

x!
=

∞∑
x=0

λ
e−λλx−1

(x− 1)!
= λ

∞∑
x=1

e−λλx−1

(x− 1)!︸ ︷︷ ︸
1

= λ. (7)

Variance is

V (X) = E(X2)− E(X)2 = λ(λ+ 1)− λ2 = λ. (8)

This is because the second moment of X is calculated as follows:

E(X2) =

∞∑
x=0

x2 e
−λλx

x!
= λ

∞∑
x=1

x
e−λλx−1

(x− 1)!
= λ

( ∞∑
x∗=0

(x∗ + 1)
e−λλx∗

x∗!

)
= λE[x∗ + 1] = λ(λ+ 1). (9)
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1.1.1 Model

yi ∈ {0, 1, 2, · · · } (discrete numbers) and yi ∼ Poi(λ). Poisson count data model is

represented as

E[yi] = λi = exp(Xiβ) (10)

where λi > 0. (Xiβ can be negative. So you should avoid the specification λ = Xiβ.)

To estimate β, we use MLE. Likelihood function is

L(β) = f(y1, y2, · · · , yn) =
n∏

i=1

f(yi) =

n∏
i=1

e−λiλyi

i

yi!
, (11)

where λi = exp(Xiβ). By taking natural logarithm, we obtain the following equation:

logL(β) = −
n∑

i=1

λi +

n∑
i=1

yi log λi −
n∑

i=1

log(yi!) (12)

= −
n∑

i=1

exp(Xiβ) +

n∑
i=1

yiXiβ −
n∑

i=1

log(yi!) (13)

Then, by differentiating with β, we obtain

∂ logL(β)

∂β
= −

n∑
i=1

X ′
i exp(Xiβ) +

n∑
i=1

X ′
iyi = 0. (14)

Obtaining β is difficult. Hence, we use Newton Raphson method or method of Scoring.

The procedure is shown below:

β(j+1) = β(j) −

(
−

n∑
i=1

X ′
iXi exp(Xiβ

(j))

)−1(
−

n∑
i=1

X ′
i exp(Xiβ

(j)) +

n∑
i=1

X ′
iyi

)
(15)

1.1.2 Review: Non-linear Optimization Procedure

Note that the Newton-Raphson method (one of the non-linear optimization procedure)

is described as follows:

β(j+1) = β(j) −

(
∂2 logL(β(j))

∂β∂β′

)−1
∂ logL(β(j))

∂β

This equation comes from the first-order Taylor series expansion around β = β∗:

0 =
∂ logL(β)

∂β
≈

∂ logL(β∗)

∂β
+

∂2 logL(β∗)

∂β∂β′ (β − β∗)
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Then we obtain

∂2 logL(β∗)

∂β∂β′ (β − β∗) = −
∂ logL(β∗)

∂β

β − β∗ = −

(
∂2 logL(β∗)

∂β∂β′

)−1
∂ logL(β∗)

∂β

This yields the above equation. If we take expectation on second derivative of likelihood

function, the method is known as the method of Scoring(スコア法).

1.2 Example

Here, we supply an example of Poisson regression from Stata 13 manual.

In a famous age-specific study of coronary disease deaths among male British doctors,

Doll and Hill (1966) reported the following data (reprinted in Rothman, Greenland, and

Lash [2008, 264]):

Smokers Nonsmokers

Age Deaths person-years Age Deaths person-years

35–44 32 52407 35–44 2 18790

45–54 104 43248 45–54 12 10673

55–64 206 28612 55–64 28 5710

65–74 186 12663 65–74 28 2585

75–84 102 5317 75–84 31 1462

We can use this dataset by typing the following command:

use http://www.stata-press.com/data/r13/dollhill3, clear

We conduct a Poisson regression the model shown below by the following command:

poisson deaths smokes i.agecat, exposure(pyears) irr

The model is

E[Deathsj ] = EXPj exp(I
∗
j β

∗ + β0 + I45j β1 + I55j β2 + I65j β3 + I75j β4) (16)

= exp(lnEXPj + I∗j β
∗ + β0 + I45j β1 + I55j β2 + I65j β3 + I75j β4) (17)

I∗j =

{
1 if j is smoke
0 otherwise

(18)

where Deathsj is number of deaths, EXPj is exposure term, and Ikj is indicator function

if Age is between k and k + 9, 1; otherwise 0. The result is below.
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1.3 Zero Inflated Poisson Count Data Model

The model is the same so far:

E[yi] = λi = exp(Xiβ),

but we observe too many zeros. We have to modify the estimation procedure because

the estimation often becomes bad. So we assume that there are two regimes below:

• Regime 1: yi = 0 w.p.1

Regime1 is chosen with probability “F (Ziα)”

• Regime 2: yi ∼ Poi(λi)

Regime2 is chosen with probability “1− F (Ziα)”.

So the probability of observing yi = j is

P (yi = 0) = P (yi = 0 | R1)P (R1) + P (yi = 0 | R2)P (R2),

P (yi = j) = P (yi = j | R1)P (R1) + P (yi = j | R2)P (R2).

This can be rewritten as

P (yi = j) = P (R1)Ii + P (yi = j | R2)P (R2)
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From some assumption above,

P (R1) = F (Ziα)

P (R2) = 1− F (Ziα)

P (yi = j|R2) =
e−λiλyi

i

yi!

So probability function can be rewritten as

P (yi = j) = F (Ziα)Iyi=0 +
e−λiλyi

i

yi!
(1− F (Ziα)), j = 0, 1, 2, · · · .

where Likelihood function is

logL(α, β) =

n∑
i=1

logP (yi = j) =

n∑
i=1

log

(
F (Ziα)Iyi=0 +

e−λiλyi

i

yi!
(1− F (Ziα))

)

This log-likelihood function is maximized with respect to α and β by using Newton-

Raphson Method or Method of Scoring.

2 Summary of Qualitative Dependent Variable

Here, we shortly summarize what we have learned by now. When the dependent

variable is discrete, the regular method (OLS) is not adequate because the prediction

does not work. In most cases, estimation is conducted by maximum likelihood method

(最尤法) (including numerical non-linear estimation).

• Discrete Choice Model(離散選択モデル): Choices are discrete.

– Binary Choice Model(二値選択モデル):

yi =

{
1 y∗i > 0
0 y∗i ≤ 0

(19)

Choices are restricted to 0 and 1.

→ we have Probit and Logit Model. The difference is distribution function.

– Ordered Probit or Logit Model:

yi =


1, if −∞ < y∗i ≤ a1
2, if a1 < y∗i ≤ a2
...
m, if am−1 < y∗i < ∞

(20)
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– Multinominal Logit Model: Choices are restricted to 0 to m.

yi isn’t ordered.

– Nested Logit Model: Choices have nested (tree) structure

• Limited Dependent Variable Model(制限従属変数モデル): unobservable dependent

variable or exact value of dependent variable is unknown

– Truncated Regression Model:

yi = Xiβ + ui, ui ∼ N(0, σ2) when yi > a, (21)

→ we have to use f(yi|yi > a) to make likelihood function.

– Censored Regression Model or Tobit Model: When the dependent

variable is censored: we can know the existence of observation but we cannot

know exact value of it.

→ we have to consider the fully observable probability

yi =

{
Xiβ, if yi > a
a, otherwise

(22)

Likelihood function is

L(β) =

n∏
i=1

f(yi) =

n∏
i=1

f(yi)
I(yi>a)P (yi = a)I(yi=a). (23)

• Count Data Model(計数データモデル):

yi ∈ {0, 1, 2, · · · }, yi ∼ Poi(λi) (24)

Dependent variable is count data (0, 1, · · · )
– Poisson Model: dependent variable counts rare event.

– Zero Inflated Poisson Model: dependent variable counts rare event and

contains too much zeros.
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