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3.1 Panel model: Basics

Consider a dataset with time and individual specified structure. Then the model is

described as follows:

yit = Xitβ + vi + uit, (1)

i: individual (i = 1, 2, · · · , n) (2)

t: time (t = 1, 2, · · · , T ) (3)

• The error term uit assume that

– E[uit] = 0, V (uit) = σ2
u

– Cov(uit, ujs) = 0 for i ̸= j, t ̸= s.

• The variable vi = ziα

– vary across the individual i.
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– zi may be observable(race, sex ...) or unobservable(skill, preference ...).

3.1.1 Difference between fixed effect model and random effect model

• zi is correlated with Xi,t and vi = ziα is constant term across i.

→ fixed effect model

• zi is uncorrelated with Xi,t.

→ random effect model

3.2 Fixed effect model

y : (nT × 1), X : regressor(nT × k), α : individual effect(n× 1), u : error term(nT × 1)

y = Xβ +Dα+ u (4)

where

D = (In ⊗ 1T )

Multipling MD = InT −D(D′D)−1D′ from left side of (6),

MDy = MDXβ +MDu (5)

OLS estimator of β in (5) is fixed effect estimator,

β̂FE = (X ′MDX)−1X ′MDy

Individual effect can be recovered as below

(→least squares dummy variable (LSDV) model)

y = Xβ̂fe +Dα̂+M(X,D)u, α̂, β̂feis OLS estimator

=⇒D′y = D′Xβ̂fe +D′Dα̂

=⇒α̂ = (D′D)−1D′(y −Xβ̂fe)

3.3 Random effect model

yi = Xiβ + ϵi, ϵi = 1T vi + ui ∼ N(0,Ω) (6)
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where

Ω =


σ2
u + σ2

v σ2
v · · · σ2

v

σ2
v σ2

u + σ2
v · · ·

...
... · · ·

. . .
...

σ2
v · · · · · · σ2

u + σ2
v

 (7)

Conditions of this model are

• E(vi|X) = E(uit|X) = 0 for all i

• E(vi|X) = σ2
v

• V (uit|X) = σ2
u

• Cov(vi, vj |X) = 0 for i ̸= j

• Cov(uit, ujs|X) = 0 for i ̸= j and t ̸= s

• Cov(vi, ujt|X) = 0 for all i, j and t

MLE of this model is

β̂re = (X ′ΩX)−1X ′Ωy

This is equivalent to GLS(efficient estimator).

3.4 Hausman’s Specification Error(特定化誤差)

Now we consider a regression model:

y = Xβ + u.

If E[u|X] = 0, OLSE(β̂ = (X ′X)−1Xy) have unbiasedness and consistency.

• unbiasedness:

E[β̂] = β + E[(X ′X)−1X ′u]

= β + E
[
(X ′X)−1X ′E [u|X]

]
• consistency: OLSE can be written as below,

β̂ = (X ′X)−1X ′y

= β + (X ′X)−1X ′u (8)

= β +

(
1

n
X ′X

)−1
1

n
X ′u.
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Suppose that

Mxx ≡ 1

n

n∑
i=1

xix
′
i (9)

→ Q−1. (10)

If E[u|X] = 0, E[X ′u] = E[X ′E[u|X]] = 0. So

Mux ≡ 1

n

n∑
i=1

xi
(k×1)

ui
(1×1)

→ E[ x
(k×1)

u
(1×1)

] (11)

= E [xE [u|x]] = 0. (12)

However, if E[u|X] ̸= 0, OLSE β̂ is biased and inconsistent. So we should check whether

X is correlated with u.

→ Hausman’s Specification Error Test

3.4.1 Hausman’s Specification Error Test

The null and alternative hypotheses are:

H0 : E[X ′u] = 0 (Cov(X,u) = 0 (X is not correlated with u))

H1 : E[X ′u] ̸= 0 (X is correlated with u)

If

• “β̂0: consistent and efficient, β̂1: consistent and not efficient”

⇐⇒E[X ′u] = 0

• β̂0: not consistent, β̂1: consistent

⇐⇒E[X ′u] ̸= 0

are valid, you can rewrite the condition below:

H0 : β̂0: consistent and efficient, β̂1: consistent and not efficient

H1 : β̂0: not consistent, β̂1: consistent

Example� �
• β̂0 is OLSE, while β̂1 is IV estimator such as 2SLS

• β̂0 is MLE or GLSE β̃ in RE model, while β̂1 is OLSE in FE model.� �
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3.5 Choice of Fixed Effect Model or Random Effect Model

Review� �
• vi isn’t correlated with X → Random Effect Model

⇐⇒ H0 : E[X ′(u+ v)] = 0

• vi is correlated with X → Fixed Effect Model

⇐⇒ H1 : E[X ′(u+ v)] ̸= 0� �
3.5.2 Fixed Effect Model or Random Effect Model

We set β̂fe :FE model and β̂re :RE model. Asymptotic properties of them are

√
T β̂re → N(0, V0)

√
T β̂fe → N(0, V1)

where V0 is Cramer-Rao bound (T is sample size).

Under H0,

V [β̂fe − β̂re] = V [β̂fe]− V [β̂re]. (13)

Test statistic is

(β̂fe − β̂re)
′
[
V [β̂fe]− V [β̂re]

]−1

(β̂fe − β̂re) → χ2(k).

[Proof of (13)]

We prove that under H0,

C ′ ≡ cov(β̂fe − β̂re, β̂re) = 0 (14)

Consider a new estimator

q̂ ≡ β̂fe − β̂re

β̂2 = β̂re − rC ′q̂

Variance of β̂2 is

V [β̂2] = V [β̂re]− 2rC ′C + r2C ′V [q̂]C
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Difference between V [β̂2] and V [β̂re] is

F (r) = V [β̂2]− V [β̂re] = −2rC ′C + r2C ′V [q̂]C

By taking derivatives with respect to r,

F ′(r) = −2C ′C + 2rC ′V [q̂]C

When r = 0, F (0) = 0 and F ′(0) = −2C ′C(negative semi-definite) From this result,

F (r) is negative semi-definite for small r. So we can find that C ′C = 0(C = 0)
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