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1 Method of Moments(積率法)

In the method of moment, we estimate parameters by using the moment conditions.

The generalized method of moments (GMM) estimator is robust to some variations in

the underlying data generating process. However, in most cases, method of moments

are not efficient. The exception is in random sampling from exponential families of

distributions∗.

∗ All comments welcome!
† E-mail: u626530i@ecs.osaka-u.ac.jp, Room 501
∗ See Greene.
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1.1 Review

As n → ∞, we have the result:

X =
1

n

n∑
i=1

Xi −→ E[X] = µ,

where X1, X2, . . . Xn are n realizations(実現値) of X.

Review: Chebyshev’s inequality (チェビシェフの不等式)� �
Chebyshev’s inequality (チェビシェフの不等式) is given by

P [|X − µ| > ε] ≤
σ2

ε2
or P [|X − µ| ≤ ε] > 1−

σ2

ε2

where µ = E[X], σ2 = V (X) and any ε > 0.

Proof. The following Markov’s Inequality gives the straight forward proof. By

putting u(X) = (X − µ)2 and c = k2σ2. we obtain

P [(X − µ)2 ≥ k2σ2] ≤
E[(X − µ)2]

k2σ2
=

1

k2
.

Then we can rewrite the inequality as follows:

P [|(X − µ)| ≥ kσ] ≤
1

k2
.

Putting k = ε/σ, we obtain the inequality.� �
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Review: Markov’s inequality (マルコフの不等式)� �
Let u(X) be a nonnegative function of the random variable X. If E[u(X)] exists,

then for every positive constant c,

P [u(X) ≥ c] ≤
E[u(X)]

c
.

Proof. We consider the case when the random variable is continuous. Let A = {x :

u(x) ≥ c} and let f(x) denote the probability distribution function of X. Then we

have

E[u(X)] =

∫ ∞

−∞
u(x)f(x)dx =

∫
A

u(x)f(x)dx+

∫
Ac

u(x)f(x)dx

≥
∫
A

u(x)f(x)dx ≥
∫
A

cf(x)dx = cP [X ∈ A] = cP [u(X) ≥ c].

Rearranging this, we have the inequality.� �
Replace X, E[X] and V (X) by X, E[X] = µ and V [X] = σ2/n in the Chebyshev’s

Inequality. Then, as n → ∞, we obtain

P [|X − µ| ≤ ε] ≥ 1−
σ2

nε2
−→ 1.

This implies that X → µ as n → ∞.

X is an approximation of E[X] = µ. Therefore, X =
∑n

i=1 Xi/n is taken as an

estimator of µ.

2 Application: Regression model

We consider an application of the MM method to regression model. Consider the

regression model:

yi = xiβ + ui,

We place familiar assumption: E[u|x] = 0(E[x′u] = 0), where x is a 1× k vector and u

is a scalar. This is called the orthogonality condition (直交条件).

From the law of large numbers, we have the following equality:

1

n
X ′u =

1

n

n∑
i=1

x′
i︸︷︷︸

k×1

ui︸︷︷︸
1×1

=
1

n

n∑
i=1

x′
i(yi − xiβ) −→ E[x′u] = 0.
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Thus, the MM estimator of β, denoted by βMM , satisfies:

1

n

n∑
i=1

x′
i(yi − xiβ) = 0.

Rearranging this equation, we obtain βMM as follows:

βMM =

(
1

n

n∑
i=1

x′
ixi

)−1

︸ ︷︷ ︸
k×k

(
1

n

n∑
i=1

x′
iyi

)
︸ ︷︷ ︸

k×1

= (X ′X)−1X ′y

where X ′ = (x′
1, · · · , x′

n) and y = (y1, · · · , yn)′.
This formula implies that βMM is equivalent to OLSE.

3 Instrumental Variables

Note that β̂ = (X ′X)−1X ′y is inconsistent when E[x′u] ̸= 0, i.e.,

β̂ = (X ′X)−1X ′y = β + (X ′X)−1Xu = β +

(
1

n
X ′X

)−1(
1

n
X ′u

)
̸→ β,

where

1

n
X ′u =

1

n

n∑
i=1

x′
iui −→ E[x′u] ̸= 0.

In order to obtain a consistent estimator of β, we find an instrumental variable z

which satisfies E[z′u] = 0. Let zi be the ith realization of z, where zi is a 1× k vector†.

Letting Z ′ = (z′1, · · · , z′n), we have the following formula:

1

n
Z ′u =

1

n

n∑
i=1

z′iui −→ E[z′u] = 0.

We denote βIV which satisfies:

1

n

n∑
i=1

z′i(yi − xiβIV ) = 0.

† Important assumption!
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Rearranging this equation, we obtain

βIV =

(
1

n

n∑
i=1

z′ixi

)−1(
1

n

n∑
i=1

z′iyi

)
= (Z ′X)−1Z ′y.

Note that Z ′X is a k × k square matrix, where we assume that the inverse matrix of

Z ′X exists. This implies that the matrix has rank k. Assume that, as n → ∞, there

exist the following moment matrices:

1

n

n∑
i=1

z′ixi =
1

n
Z ′X → Mzx,

1

n

n∑
i=1

z′izi → Mzz.

As n goes to infinity, βIV is rewritten as:

βIV = (Z ′X)−1Z ′y = (Z ′X)−1Z ′(Xβ + u) = β + (Z ′X)−1Z ′u

= β +

(
1

n
Z ′X

)−1(
1

n
Z ′u

)
−→ β +Mzx × 0 = β.

Thus, βIV is a consistent estimator of β.

3.1 Asymptotic distribution

Now, we consider the asymptotic distribution of βIV . By the Central Limit Theorem,

√
n

(
1

n
Z ′u

)
=

1
√
n
Z ′u −→ N(0, σ2Mzz)

Note that

V

[
1

n
Z ′u

]
= nV (Z ′u) =

1

n
E[Z ′uu′Z] =

1

n
E[E[Z ′uuZ | Z]]

=
1

n
E[Z ′E[uu′ | Z]Z] =

1

n
E[σ2Z ′Z] = E[σ2 1

n
Z ′Z] −→ E[σ2Mzz] = σMzz.

We obtain the following asymptotic distribution:

√
n(βIV − β) =

(
1

n
Z ′X

)−1(
1
√
n
Z ′u

)
−→ N(0, σ2M−1

zx MzzM
−1
zx ).

Practically, for large n, we use the following distribution:

βIV ∼ N(β, s2(Z ′X)−1Z ′Z(Z ′X)−1), where s2 =
1

n− k
(y −XβIV )

′(y −XβIV ).
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In the case where zi is a 1 × r vector for r > k, Z ′X is a r × k matrix, which is not a

square matrix. This implies that the matrix has no inverse matrix. In order to apply

this method to r > k case, we consider Generalized Method of Moments (GMM,

一般化積率法) in the next lecture.

4 Example

I will introduce an example of GMM estimation (Hall(1978)).The original form of the

model is derived by optimization problem below.

Maximize Et

[
T−t∑
τ=0

(
1

1 + δ

)τ

U(ct+τ )

]

subject to

T−t∑
τ=0

(
1

1 + r

)τ

(ct+1τ − wt+τ ) = At

The solution to the optimization problem is

Et[U
′(ct+1)|Ωt] =

1 + δ

1 + r
U ′(ct).

When U(ct) =
c1−α
t −1
1−α (power utility),

Et

[
(1 + r)

(
1

1 + δ

)(
ct+1

ct

)−α

− 1|Ωt

]
= Et

[
β(1 + r)Rλ

t+1 − 1|Ωt

]
= 0

Where Rt+1 = ct+1/ct and λ = −α. Assume that r is not constant, the estimator can

be estimated by using

Et


(

1
Rt

)
︸ ︷︷ ︸

z′

(β(1 + rt+1)R
λ
t+1 − 1)︸ ︷︷ ︸

u

 =

(
0
0

)
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