Homework (Due: December 20, 2018, AM10:20)

1 Consider the following regression model:

$$
y_{i}^{*}=X_{i} \beta+u_{i}
$$

where X_{i} is assumed to be exogenous and nonstochastic, and $u_{1}, u_{2}, \cdots, u_{n}$ are mutually independent errors.

Let $f(x)$ be the density function of u_{i} and $F(x)$ be the cumulative distribution function of u_{i}, i.e., $F(x)=\int_{-\infty}^{x} f(z) \mathrm{d} z$.
(a) Let us define:
$y_{i}= \begin{cases}1, & \text { if } y_{i}^{*}>0, \\ 0, & \text { if } y_{i}^{*} \leq 0,\end{cases}$
i.e., y_{i}^{*} is not observed and we know the sign of y_{i}^{*} (i.e., positive or negative). y_{i} is assigned to be one when $y_{i}^{*}>0$, while it is zero when $y_{i} \leq 0$.
(1) What is $\mathrm{E}\left(y_{i}\right)$?
(2) Obtain the likelihood function.
(3) Assuming that the density function of u_{i} is $f(\cdot)$, derive the first-order condition.
(4) Discuss how to estimate β and σ^{2}.
(5) What is the asymptotic distribution of the maximum likelihood estimator of $\beta^{*}=\frac{\beta}{\sigma}$?
(b) Let us define:

$$
y_{i}^{*}=y_{i}, \quad \text { if } y_{i}>0
$$

i.e., y_{t}^{*} is not observed when $y_{t} \leq 0$ and $y_{t}^{*}=y_{t}$ is observed when $y_{t}>0$.
(6) What is $\mathrm{E}\left(y_{i} \mid y_{i}>0\right)$?
(7) Obtain the likelihood function.
(8) Assuming that the density function of u_{i} is $f(\cdot)$, derive the first-order condition.
(9) Discuss how to estimate β and σ^{2}.
(10) What are the asymptotic distributions of the maximum likelihood estimators of β and $\sigma^{2} ?$
(c) Let us define:

$$
y_{i}^{*}= \begin{cases}y_{i}, & \text { if } y_{i}>0 \\ 0, & \text { if } y_{i} \leq 0\end{cases}
$$

i.e., $y_{t}^{*}=0$ is observed when $y_{t} \leq 0$ and $y_{t}^{*}=y_{t}$ is observed when $y_{t}>0$.
(11) Obtain the likelihood function.
(12) Assuming that the density function of u_{i} is $f(\cdot)$, derive the first-order condition.
(13) Discuss how to estimate β and σ^{2}.
(14) What are the asymptotic distributions of the maximum likelihood estimators of β and $\sigma^{2} ?$

2 Suppose that the probability function of y_{i} is Poisson with parameter λ_{i} for $i=1,2, \cdots, n$.
(15) What is $\mathrm{E}\left(y_{i}\right)$?
(16) Assuming $\lambda_{i}=\exp \left(X_{i} \beta\right)$, obtain the likelihood function, where β is a unknown parameter vector to be estimated.
(17) Derive the first-order condition for maximization of the log-likelihood function.
(18) Discuss how to estimate β.
(19) What are the asymptotic distribution of the maximum likelihood estimator of β ?

