Homework (Due: December 20, 2018, AM10:20)

1 Consider the following regression model:

$$y_i^* = X_i\beta + u_i$$

where X_i is assumed to be exogenous and nonstochastic, and u_1, u_2, \dots, u_n are mutually independent errors.

Let f(x) be the density function of u_i and F(x) be the cumulative distribution function of u_i , i.e., $F(x) = \int_{-\infty}^x f(z) dz$.

(a) Let us define:

$$y_i = \begin{cases} 1, & \text{if } y_i^* > 0, \\ 0, & \text{if } y_i^* \le 0, \end{cases}$$

i.e., y_i^* is not observed and we know the sign of y_i^* (i.e., positive or negative). y_i is assigned to be one when $y_i^* > 0$, while it is zero when $y_i \le 0$.

- (1) What is $E(y_i)$?
- (2) Obtain the likelihood function.
- (3) Assuming that the density function of u_i is $f(\cdot)$, derive the first-order condition.
- (4) Discuss how to estimate β and σ^2 .
- (5) What is the asymptotic distribution of the maximum likelihood estimator of $\beta^* = \frac{\beta}{\sigma}$?
- (b) Let us define:

$$y_i^* = y_i, \qquad \text{if } y_i > 0,$$

i.e., y_t^* is not observed when $y_t \leq 0$ and $y_t^* = y_t$ is observed when $y_t > 0$.

- (6) What is $E(y_i | y_i > 0)$?
- (7) Obtain the likelihood function.
- (8) Assuming that the density function of u_i is $f(\cdot)$, derive the first-order condition.
- (9) Discuss how to estimate β and σ^2 .
- (10) What are the asymptotic distributions of the maximum likelihood estimators of β and σ^2 ?

(c) Let us define:

$$y_i^* = \begin{cases} y_i, & \text{if } y_i > 0, \\ 0, & \text{if } y_i \le 0, \end{cases}$$

i.e., $y_t^* = 0$ is observed when $y_t \le 0$ and $y_t^* = y_t$ is observed when $y_t > 0$.

(11) Obtain the likelihood function.

- (12) Assuming that the density function of u_i is $f(\cdot)$, derive the first-order condition.
- (13) Discuss how to estimate β and σ^2 .

(14) What are the asymptotic distributions of the maximum likelihood estimators of β and σ^2 ?

2 Suppose that the probability function of y_i is Poisson with parameter λ_i for $i = 1, 2, \dots, n$.

(15) What is $E(y_i)$?

(16) Assuming $\lambda_i = \exp(X_i\beta)$, obtain the likelihood function, where β is a unknown parameter vector to be estimated.

- (17) Derive the first-order condition for maximization of the log-likelihood function.
- (18) Discuss how to estimate β .
- (19) What are the asymptotic distribution of the maximum likelihood estimator of β ?