Econometrics II

(Thu., 8:50-10:20)

Room # 4 (法経講義棟)

• The prerequisites of this class are **Special Lectures in Economics** (**Statistical Analysis**), 経済学特論(統計解析) (last semester) and **Econometrics I** (エコノメトリックス **I**) (graduate level, last semester).

TA Session

by Simoshimizu (D2 下清水 慎, shimosshi1q94 [at] gmail.com)

and Kudo (D1 工藤 健太, u035478k [at] ecs.osaka-u.ac.jp)

From Oct. 8, 2019

Tue. 10:30 - 12:00

Room #4(法経講義棟)

• Download the lecture notes from the following websites:

http://www2.econ.osaka-u.ac.jp/~tanizaki/class/2019/econome2/http://stat.econ.osaka-u.ac.jp/~tanizaki/class/2019/econome2/

Contents

1	Max	ximum Likelihood Estimation (MLE, 最尤法) — Review	7		
2	Qua	Qualitative Dependent Variable (質的従属変数)			
	2.1	Discrete Choice Model (離散選択モデル)	31		
		2.1.1 Binary Choice Model (二値選択モデル)	31		
	2.2	Limited Dependent Variable Model (制限従属変数モデル)	52		
	2.3	Count Data Model (計数データモデル)	61		
3 Panel Data		el Data	69		
	3.1	GLS — Review	69		
	3.2	Panel Model Basic	73		
		3.2.1 Fixed Effect Model (固定効果モデル)	74		

		3.2.2	Random Effect Model (ランダム効果モデル)	82
	3.3 Hausman's Specification Error (特定化誤差) Test			86
	3.4	Choice	e of Fixed Effect Model or Random Effect Model	88
		3.4.1	The Case where X is Correlated with u — Review	88
		3.4.2	Fixed Effect Model or Random Effect Model	90
4	4 Applications			
5	Gen	eralized	l Method of Moments (GMM, 一般化積率法)	123
	5.1	Metho	d of Moments (MM, 積率法)	123
	5.2	Genera	alized Method of Moments (GMM, 一般化積率法)	131
	5.3	Genera	alized Method of Moments (GMM, 一般化積率法) II — Non-	
		linear (Case —	153

6	Tim	ime Series Analysis (時系列分析)			
	6.1	Introduction	175		
	6.2	Autoregressive Model (自己回帰モデル or AR モデル)	180		
	6.3	MA Model	209		
	6.4	ARMA Model	224		
	6.5	ARIMA Model	229		
	6.6	SARIMA Model	230		
	6.7	Optimal Prediction	230		
	6.8	Identification	233		
	6.9	Example of SARIMA using Consumption Data	236		
7	Unit Root (単位根) and Cointegration (共和分)		241		
	7.1	Unit Root (単位根) Test (Dickey-Fuller (DF) Test)	241		
	7.2	Serially Correlated Errors	277		

	7.2.1	Augmented Dickey-Fuller (ADF) Test	278
7.3	Cointe	gration (共和分)	281
7.4	Testing	g Cointegration	298
	7.4.1	Engle-Granger Test	298

1 Maximum Likelihood Estimation (MLE, 農党法) —

Review

- 1. We have random variables X_1, X_2, \dots, X_n , which are assumed to be mutually independently and identically distributed.
- 2. The distribution function of $\{X_i\}_{i=1}^n$ is $f(x;\theta)$, where $x=(x_1,x_2,\cdots,x_n)$ and $\theta=(\mu,\Sigma)$.

Note that *X* is a vector of random variables and *x* is a vector of their realizations (i.e., observed data).

Likelihood function $L(\cdot)$ is defined as $L(\theta; x) = f(x; \theta)$.

Note that $f(x;\theta) = \prod_{i=1}^n f(x_i;\theta)$ when X_1, X_2, \dots, X_n are mutually indepen-

dently and identically distributed.

The maximum likelihood estimator (MLE) of θ is θ such that:

$$\max_{\theta} \ L(\theta; X). \qquad \Longleftrightarrow \qquad \max_{\theta} \ \log L(\theta; X).$$

MLE satisfies the following two conditions:

(a)
$$\frac{\partial \log L(\theta; X)}{\partial \theta} = 0.$$

(b)
$$\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}$$
 is a negative definite matrix.

3. **Fisher's information matrix** (フィッシャーの情報行列) is defined as:

$$I(\theta) = -E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right),\,$$

where we have the following equality:

$$-\mathrm{E}\Big(\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\Big) = \mathrm{E}\Big(\frac{\partial \log L(\theta;X)}{\partial \theta} \frac{\partial \log L(\theta;X)}{\partial \theta'}\Big) = \mathrm{V}\Big(\frac{\partial \log L(\theta;X)}{\partial \theta}\Big)$$

Proof of the above equality:

$$\int L(\theta; x) \mathrm{d}x = 1$$

Take a derivative with respect to θ .

$$\int \frac{\partial L(\theta; x)}{\partial \theta} dx = 0$$

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative $\frac{\partial L(\theta; x)}{\partial \theta}$ exists.)

Rewriting the above equation, we obtain:

$$\int \frac{\partial \log L(\theta; x)}{\partial \theta} L(\theta; x) dx = 0,$$

i.e.,

$$E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0.$$

Again, differentiating the above with respect to θ , we obtain:

$$\int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta'} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial L(\theta; x)}{\partial \theta'} dx$$

$$= \int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta'} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) dx$$

$$= E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) + E\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = 0.$$

Therefore, we can derive the following equality:

$$-\mathrm{E}\left(\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right) = \mathrm{E}\left(\frac{\partial \log L(\theta;X)}{\partial \theta} \frac{\partial \log L(\theta;X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right),$$

where the second equality utilizes $E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0$.

4. Cramer-Rao Lower Bound (クラメール・ラオの下限): $(I(\theta))^{-1}$

Suppose that an unbiased estimator of θ is given by s(X).

Then, we have the following:

$$V(s(X)) \ge (I(\theta))^{-1}$$

Proof:

The expectation of s(X) is:

$$E(s(X)) = \int s(x)L(\theta; x)dx.$$

Differentiating the above with respect to θ ,

$$\begin{split} \frac{\partial \mathrm{E}(s(X))}{\partial \theta'} &= \int s(x) \frac{\partial L(\theta; x)}{\partial \theta'} \mathrm{d}x = \int s(x) \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) \mathrm{d}x \\ &= \mathrm{Cov} \left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta} \right) \end{split}$$

For simplicity, let s(X) and θ be scalars.

Then,

$$\left(\frac{\partial E(s(X))}{\partial \theta}\right)^{2} = \left(Cov\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)\right)^{2} = \rho^{2}V(s(X))V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)$$

$$\leq V(s(X))V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),$$

where ρ denotes the correlation coefficient between s(X) and $\frac{\partial \log L(\theta; X)}{\partial \theta}$, i.e.,

$$\rho = \frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)}{\sqrt{\operatorname{V}\left(s(X)\right)}\sqrt{\operatorname{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}}.$$

Note that $|\rho| \leq 1$.

Therefore, we have the following inequality:

$$\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} \leq \mathrm{V}(s(X)) \, \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),\,$$

i.e.,

$$V(s(X)) \ge \frac{\left(\frac{\partial E(s(X))}{\partial \theta}\right)^2}{V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}$$

Especially, when $E(s(X)) = \theta$,

$$V(s(X)) \ge \frac{1}{-E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta^2}\right)} = (I(\theta))^{-1}.$$

Even in the case where s(X) is a vector, the following inequality holds.

$$V(s(X)) \ge (I(\theta))^{-1},$$

where $I(\theta)$ is defined as:

$$\begin{split} I(\theta) &= -\mathrm{E}\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) \\ &= \mathrm{E}\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right). \end{split}$$

The variance of any unbiased estimator of θ is larger than or equal to $(I(\theta))^{-1}$.

5. Asymptotic Normality of MLE:

Let $\tilde{\theta}$ be MLE of θ .

As n goes to infinity, we have the following result:

$$\sqrt{n}(\tilde{\theta} - \theta) \longrightarrow N\left(0, \lim_{n \to \infty} \left(\frac{I(\theta)}{n}\right)^{-1}\right),$$

where it is assumed that $\lim_{n\to\infty} \left(\frac{I(\theta)}{n}\right)$ converges.

That is, when n is large, $\tilde{\theta}$ is approximately distributed as follows:

$$\tilde{\theta} \sim N(\theta, (I(\theta))^{-1}).$$

Suppose that $s(X) = \tilde{\theta}$.

When *n* is large, V(s(X)) is approximately equal to $(I(\theta))^{-1}$.

Practically, we utilize the following approximated distribution:

$$\tilde{\theta} \sim N\left(\theta, (I(\tilde{\theta}))^{-1}\right).$$

Then, we can obtain the significance test and the confidence interval for θ

6. **Central Limit Theorem:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma^2 < \infty$ for $i = 1, 2, \dots, n$.

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

Then, the central limit theorem is given by:

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1).$$

Note that $E(\overline{X}) = \mu$ and $V(\overline{X}) = \sigma^2/n$.

That is,

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance $\Sigma < \infty$, the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \Sigma$.

7. **Central Limit Theorem II:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma_i^2$ for $i = 1, 2, \dots, n$.

Assume:

$$\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \sigma_i^2 < \infty.$$

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

The central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance Σ_i , the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma),$$

where
$$\Sigma = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \Sigma_{i} < \infty$$
.

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \Sigma$.

[Review of Asymptotic Theories]

• Convergence in Probability (確率収束) $X_n \longrightarrow a$, i.e., X converges in probability to a, where a is a fixed number.