2.2 Limited Dependent Variable Model (制限従属変数モデル)

Truncated Regression Model: Consider the following model:

$$y_i = X_i \beta + u_i$$
, $u_i \sim N(0, \sigma^2)$ when $y_i > a$, where a is a constant,

for $i = 1, 2, \dots, n$.

Consider the case of $y_i > a$ (i.e., in the case of $y_i \le a$, y_i is not observed).

$$E(u_i|X_i\beta + u_i > a) = \int_{a-X_i\beta}^{\infty} u_i \frac{f(u_i)}{1 - F(a - X_i\beta)} du_i.$$

Suppose that $u_i \sim N(0, \sigma^2)$, i.e., $\frac{u_i}{\sigma} \sim N(0, 1)$.

Using the following standard normal density and distribution functions:

$$\phi(x) = (2\pi)^{-1/2} \exp(-\frac{1}{2}x^2),$$

$$\Phi(x) = \int_{-\infty}^{x} (2\pi)^{-1/2} \exp(-\frac{1}{2}z^2) dz = \int_{-\infty}^{x} \phi(z) dz,$$

f(x) and F(x) are given by:

$$f(x) = (2\pi\sigma^2)^{-1/2} \exp(-\frac{1}{2\sigma^2}x^2) = \frac{1}{\sigma}\phi(\frac{x}{\sigma}),$$

$$F(x) = \int_{-\infty}^{x} (2\pi\sigma^2)^{-1/2} \exp(-\frac{1}{2\sigma^2}z^2) dz = \Phi(\frac{x}{\sigma}).$$

[Review — Mean of Truncated Normal Random Variable:]

Let X be a normal random variable with mean μ and variance σ^2 .

Consider E(X|X > a), where a is known.

The truncated distribution of X given X > a is:

$$f(x|x > a) = \frac{(2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)}{\int_a^{\infty} (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right) dx} = \frac{\frac{1}{\sigma}\phi(\frac{x - \mu}{\sigma})}{1 - \Phi(\frac{a - \mu}{\sigma})}.$$

$$E(X|X > a) = \int_{a}^{\infty} x f(x|x > a) dx = \frac{\int_{a}^{\infty} x (2\pi\sigma^{2})^{-1/2} \exp\left(-\frac{1}{2\sigma^{2}}(x - \mu)^{2}\right) dx}{\int_{a}^{\infty} (2\pi\sigma^{2})^{-1/2} \exp\left(-\frac{1}{2\sigma^{2}}(x - \mu)^{2}\right) dx}$$
$$= \frac{\sigma\phi(\frac{a - \mu}{\sigma}) + \mu\left(1 - \Phi(\frac{a - \mu}{\sigma})\right)}{1 - \Phi(\frac{a - \mu}{\sigma})} = \frac{\sigma\phi(\frac{a - \mu}{\sigma})}{1 - \Phi(\frac{a - \mu}{\sigma})} + \mu,$$

 $\int_{-\pi/2}^{\infty} (2\pi\sigma^2)^{-1/2} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2) dx = \int_{-\pi/2}^{\infty} (2\pi)^{-1/2} \exp(-\frac{1}{2}z^2) dz$

where x is transformed into $z = \frac{x - \mu}{z}$. $x > a \implies z = \frac{x - \mu}{z} > \frac{a - \mu}{z}$.

 $= 1 - \int_{0}^{\frac{\alpha-\mu}{\sigma}} (2\pi)^{-1/2} \exp(-\frac{1}{2}z^2) dz$

 $=1-\Phi(\frac{a-\mu}{}),$

which are shown below. The denominator is:

The numerator is:

$$\int_{a}^{\infty} x(2\pi\sigma^{2})^{-1/2} \exp(-\frac{1}{2\sigma^{2}}(x-\mu)^{2}) dx$$

$$= \int_{\frac{a-\mu}{\sigma}}^{\infty} (\sigma z + \mu)(2\pi)^{-1/2} \exp(-\frac{1}{2}z^{2}) dz$$

$$= \sigma \int_{\frac{a-\mu}{\sigma}}^{\infty} z(2\pi)^{-1/2} \exp(-\frac{1}{2}z^{2}) dz + \mu \int_{\frac{a-\mu}{\sigma}}^{\infty} (2\pi)^{-1/2} \exp(-\frac{1}{2\sigma^{2}}z^{2}) dz$$

$$= \sigma \int_{\frac{1}{2}(\frac{a-\mu}{\sigma})^{2}}^{\infty} (2\pi)^{-1/2} \exp(-t) dt + \mu \Big(1 - \Phi(\frac{a-\mu}{\sigma})\Big)$$

$$= \sigma \phi(\frac{a-\mu}{\sigma}) + \mu \Big(1 - \Phi(\frac{a-\mu}{\sigma})\Big),$$

where z is transformed into $t = \frac{1}{2}z^2$. $z > \frac{a-\mu}{\sigma} \implies t = \frac{1}{2}z^2 > \frac{1}{2}(\frac{a-\mu}{\sigma})^2$.

[End of Review]

Therefore, the conditional expectation of u_i given $X_i\beta + u_i > a$ is:

$$E(u_i|X_i\beta + u_i > a) = \int_{a-X_i\beta}^{\infty} u_i \frac{f(u_i)}{1 - F(a - X_i\beta)} du_i = \int_{a-X_i\beta}^{\infty} \frac{u_i}{\sigma} \frac{\phi(\frac{u_i}{\sigma})}{1 - \Phi(\frac{a - X_i\beta}{\sigma})} du_i$$
$$= \frac{\sigma\phi(\frac{a - X_i\beta}{\sigma})}{1 - \Phi(\frac{a - X_i\beta}{\sigma})}.$$

Accordingly, the conditional expectation of y_i given $y_i > a$ is given by:

$$E(y_i|y_i > a) = E(y_i|X_i\beta + u_i > a) = E(X_i\beta + u_i|X_i\beta + u_i > a)$$

$$= X_i\beta + E(u_i|X_i\beta + u_i > a) = X_i\beta + \frac{\sigma\phi(\frac{a - X_i\beta}{\sigma})}{1 - \Phi(\frac{a - X_i\beta}{\sigma})},$$

for $i = 1, 2, \dots, n$.

Estimation:

MLE:

$$L(\beta, \sigma^2) = \prod_{i=1}^n \frac{f(y_i - X_i \beta)}{1 - F(a - X_i \beta)} = \prod_{i=1}^n \frac{1}{\sigma} \frac{\phi(\frac{y_i - X_i \beta}{\sigma})}{1 - \Phi(\frac{a - X_i \beta}{\sigma})}$$

is maximized with respect to β and σ^2 .

Some Examples:

1. Buying a Car:

 $y_i = x_i \beta + u_i$, where y_i denotes expenditure for a car, and x_i includes income, price of the car, etc.

Data on people who bought a car are observed.

People who did not buy a car are ignored.

2. Working-hours of Wife:

 y_i represents working-hours of wife, and x_i includes the number of children, age, education, income of husband, etc.

3. Stochastic Frontier Model:

 $y_i = f(K_i, L_i) + u_i$, where y_i denotes production, K_i is stock, and L_i is amount of labor.

We always have $y_i \le f(K_i, L_i)$, i.e., $u_i \le 0$.

 $f(K_i, L_i)$ is a maximum value when we input K_i and L_i .

Censored Regression Model or Tobit Model:

$$y_i = \begin{cases} X_i \beta + u_i, & \text{if } y_i > a, \\ a, & \text{otherwise.} \end{cases}$$

The probability which y_i takes a is given by:

$$P(y_i = a) = P(y_i \le a) = F(a) \equiv \int_{-\infty}^{a} f(x) dx,$$

where $f(\cdot)$ and $F(\cdot)$ denote the density function and cumulative distribution function of y_i , respectively.

Therefore, the likelihood function is:

$$L(\beta, \sigma^2) = \prod_{i=1}^n F(a)^{I(y_i=a)} \times f(y_i)^{1-I(y_i=a)},$$

where $I(y_i = a)$ denotes the indicator function which takes one when $y_i = a$ or zero otherwise.

When $u_i \sim N(0, \sigma^2)$, the likelihood function is:

$$L(\beta, \sigma^2) = \prod_{i=1}^n \left(\int_{-\infty}^a (2\pi\sigma^2)^{-1/2} \exp(-\frac{1}{2\sigma^2} (y_i - X_i \beta)^2) dy_i \right)^{I(y_i = a)}$$
$$\times \left((2\pi\sigma^2)^{-1/2} \exp(-\frac{1}{2\sigma^2} (y_i - X_i \beta)^2) \right)^{1 - I(y_i = a)},$$

which is maximized with respect to β and σ^2 .