
MM is applied to the regression model as follows:

Regression model: yi = xiβ + ui, where xi and ui are assumed to be stochastic.

Familiar Assumption: E(x′u) = 0, called the orthogonality condition (直交条件),

where x is a 1 × k vector and u is a scalar.

We consider that (x1, x2, · · ·, xn) and (u1, u2, · · ·, un) are realizations generated from

random variables x and u, respectively.

From the law of large number, we have the following:

1
n

n∑
i=1

x′iui =
1
n

n∑
i=1

x′i(yi − xiβ) −→ E(x′u) = 0.

Thus, the MM estimator of β, denoted by βMM, satisfies:

1
n

n∑
i=1

x′i(yi − xiβMM) = 0.
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Therefore, βMM is given by:

βMM =
(1
n

n∑
i=1

x′i xi

)−1(1
n

n∑
i=1

x′iyi

)
= (X′X)−1X′y,

which is equivalent to OLS and MLE.

Note that X and y are:

X =


x1

x2
...

xn


y =


y1

y2
...

yn


.
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• However, βMM is inconsistent when E(x′u) , 0, i.e.,

βMM = (X′X)−1X′y = β + (X′X)−1X′u = β +
(1
n

X′X
)−1(1

n
X′u
)
−→\ β.

Note as follows:
1
n

X′u =
1
n

n∑
i=1

x′iui −→ E(x′u) , 0.

In order to obtain a consistent estimator of β, we find the instrumental variable z

which satisfies E(z′u) = 0.

Let zi be the ith realization of z, where zi is a 1 × k vector.

Then, we have the following:

1
n

Z′u =
1
n

n∑
i=1

z′iui −→ E(z′u) = 0.

The β which satisfies
1
n

n∑
i=1

z′iui = 0 is denoted by βIV , i.e.,
1
n

n∑
i=1

z′i(yi − xiβIV) = 0.
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Thus, βIV is obtained as:

βIV =
(1
n

n∑
i=1

z′i xi

)−1(1
n

n∑
i=1

z′iyi

)
= (Z′X)−1Z′y.

Note that Z′X is a k × k square matrix, where we assume that the inverse matrix of

Z′X exists.

Assume that as n goes to infinity there exist the following moment matrices:

1
n

n∑
i=1

z′i xi =
1
n

Z′X −→ Mzx,

1
n

n∑
i=1

z′izi =
1
n

Z′Z −→ Mzz,

1
n

n∑
i=1

z′iui =
1
n

Z′u −→ 0.
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As n goes to infinity, βIV is rewritten as:

βIV = (Z′X)−1Z′y = (Z′X)−1Z′(Xβ + u) = β + (Z′X)−1Z′u

= β + (
1
n

Z′X)−1(
1
n

Z′u) −→ β + Mzx × 0 = β,

Thus, βIV is a consistent estimator of β.

• We consider the asymptotic distribution of βIV .

By the central limit theorem,

1
√

n
Z′u −→ N(0, σ2Mzz)

Note that V(
1
√

n
Z′u) =

1
n

V(Z′u) =
1
n

E(Z′uu′Z) =
1
n

E
(
E(Z′uu′Z|Z)

)
=

1
n

E
(
Z′E(uu′|Z)Z

)
=

1
n

E(σ2Z′Z) = E(σ2 1
n

Z′Z) −→ E(σ2Mzz) = σ2Mzz.
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We obtain the following asymmptotic distribution:

√
n(βIV − β) = (

1
n

Z′X)−1(
1
√

n
Z′u) −→ N(0, σ2M−1

zx MzzM−1
zx
′)

Practically, for large n we use the following distribution:

βIV ∼ N
(
β, s2(Z′X)−1Z′Z(Z′X)−1′

)
,

where s2 =
1

n − k
(y − XβIV)′(y − XβIV).

• In the case where zi is a 1 × r vector for r > k, Z′X is a r × k matrix, which is not a

square matrix. =⇒ Generalized Method of Moments (GMM,一般化積率法)
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4.2 Generalized Method of Moments (GMM,一般化積率法)

In order to obtain a consistent estimator of β, we have to find the instrumental variable

z which satisfies E(z′u) = 0.

For now, however, suppose that we have z with E(z′u) = 0.

Let zi be the ith realization (i.e., the ith data) of z, where zi is a 1× r vector and r > k.

Then, using the law of large number, we have the following:

1
n

Z′u =
1
n

n∑
i=1

z′iui =
1
n

n∑
i=1

z′i(yi − xiβ) −→ E(z′u) = 0.

The number of equations (i.e., r) is larger than the number of parameters (i.e., k).
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Let us define W as a r × r weight matrix, which is symmetric.

We solve the following minimization problem:

min
β

(1
n

n∑
i=1

z′i(yi − xiβ)
)′

W
(1
n

n∑
i=1

z′i(yi − xiβ)
)
,

which is equivalent to:

min
β

(
Z′(y − Xβ)

)′
W
(
Z′(y − Xβ)

)
,

i.e.,

min
β

(y − Xβ)′ZWZ′(y − Xβ).

Note that
∑n

i=1 z′i(yi − xiβ) = Z′(y − Xβ).

W should be the inverse matrix of the variance-covariance matrix of Z′(y−Xβ) = Z′u.

Suppose that V(u) = σ2Ω.
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Then, V(Z′u) = E(Z′u(Z′u)′) = E(Z′uu′Z) = Z′E(uu′)Z = σ2Z′ΩZ = W−1.

The following minimization problem should be solved.

min
β

(y − Xβ)′Z(Z′ΩZ)−1Z′(y − Xβ).

The solution of β is given by the GMM estimator, denoted by βGMM.

Remark: For the model: y = Xβ + u and u ∼ (0, σ2Ω), solving the following

minimization problem:

min
β

(y − Xβ)′Ω−1(y − Xβ),

GLS is given by:

b = (X′Ω−1X)−1X′Ω−1y.

Note that b is the best linear unbiased estimator.
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Remark: The solution of the above minimization problem is equivalent to the

GLE estimator of β in the following regression model:

Z′y = Z′Xβ + Z′u,

where Z, y, X, β and u are n × r, n × 1, n × k, k × 1 and n × 1 matrices or vectors.

Note that r > k.

y∗ = Z′y, X∗ = Z′X and u∗ = Z′u denote r × 1, r × k and r × 1 matrices or vectors,

where r > k.

Rewrite as follows:

y∗ = X∗β + u∗,

=⇒ r is taken as the sample size.

u∗ is a r × 1 vector.
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The elements of u∗ are correlated with each other, beacuse each element of u∗ is a

function of u1, u2, · · ·, un.

The variance of u∗ is:

V(u∗) = V(Z′u) = σ2Z′ΩZ.

Go back to GMM:

(y − Xβ)′Z(Z′ΩZ)−1Z′(y − Xβ)

= y′Z(Z′ΩZ)−1Z′y − β′X′Z(Z′ΩZ)−1Z′y − y′Z(Z′ΩZ)−1Z′Xβ + β′X′Z(Z′ΩZ)−1Z′Xβ

= y′ZWZ′y − 2y′Z(Z′ΩZ)−1Z′Xβ + β′X′Z(Z′ΩZ)−1Z′Xβ.

Note that β′X′Z(Z′ΩZ)−1Z′y = y′Z(Z′ΩZ)−1Z′Xβ because both sides are scalars.

Remember that
∂Ax

x
= A′ and

∂x′Ax
x
= (A + A′)x.
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Then, we obtain the following derivation:

∂(y − Xβ)′Z(Z′ΩZ)−1Z′(y − Xβ)
∂β

= −2(y′Z(Z′ΩZ)−1Z′X)′ + (X′Z(Z′ΩZ)−1Z′X + (X′Z(Z′ΩZ)−1Z′X)′)β

= −2X′Z(Z′ΩZ)−1Z′y + 2X′Z(Z′ΩZ)−1Z′Xβ = 0

The solution of β is denoted by βGMM, which is:

βGMM = (X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′y.

The mean of βGMM is asymptotically obtained.

βGMM = (X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′(Xβ + u)

= β + (X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′u

= β +
(
(
1
n

X′Z)(
1
n

Z′ΩZ)−1(
1
n

Z′X)
)−1

(
1
n

X′Z)(
1
n

Z′ΩZ)−1(
1
n

Z′u)
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We assume that

1
n

X′Z −→ Mxz and
1
n

Z′ΩZ −→ MzΩz,

which are k × r and r × r matrices.

From the assumption of
1
n

Z′u −→ 0, we have the following result:

βGMM −→ β + (MxzM−1
zΩzM

′
xz)
−1MxzM−1

zΩz × 0 = β.

Thus, βGMM is a consistent estimator of β (i.e., asymptotically unbiased estimator).
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The variance of βGMM is asymptotically obtained as follows:

V(βGMM) = E
(
(βGMM − E(βGMM))(βGMM − E(βGMM))′

)
≈ E
(
(βGMM − β)(βGMM − β)′

)
= E
(
(X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′u((X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′u)′

)
= E
(
(X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′uu′Z(Z′ΩZ)−1Z′X(X′Z(Z′ΩZ)−1Z′X)−1

)
≈ (X′Z(Z′ΩZ)−1Z′X)−1X′Z(Z′ΩZ)−1Z′E(uu′)Z(Z′ΩZ)−1Z′X(X′Z(Z′ΩZ)−1Z′X)−1

= σ2(X′Z(Z′ΩZ)−1Z′X)−1.

Note that βGMM −→ β implies E(βGMM) −→ β in the 1st line.

≈ in the 4th line indicates that Z and X are treated as exogenous variables although

they are stochastic.

We assume that E(uu′) = σ2Ω from the 4th line to the 5th line.
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