The variance of β_{GMM} is asymptotically obtained as follows:

$$\begin{aligned} \mathsf{V}(\beta_{GMM}) &= \mathsf{E}\Big((\beta_{GMM} - \mathsf{E}(\beta_{GMM}))(\beta_{GMM} - \mathsf{E}(\beta_{GMM}))'\Big) \approx \mathsf{E}\Big((\beta_{GMM} - \beta)(\beta_{GMM} - \beta)'\Big) \\ &= \mathsf{E}\Big((X'Z(Z'\Omega Z)^{-1}Z'X)^{-1}X'Z(Z'\Omega Z)^{-1}Z'u((X'Z(Z'\Omega Z)^{-1}Z'X)^{-1}X'Z(Z'\Omega Z)^{-1}Z'u)'\Big) \\ &= \mathsf{E}\Big((X'Z(Z'\Omega Z)^{-1}Z'X)^{-1}X'Z(Z'\Omega Z)^{-1}Z'uu'Z(Z'\Omega Z)^{-1}Z'X(X'Z(Z'\Omega Z)^{-1}Z'X)^{-1}\Big) \\ &\approx (X'Z(Z'\Omega Z)^{-1}Z'X)^{-1}X'Z(Z'\Omega Z)^{-1}Z'\mathsf{E}(uu')Z(Z'\Omega Z)^{-1}Z'X(X'Z(Z'\Omega Z)^{-1}Z'X)^{-1} \\ &= \sigma^{2}(X'Z(Z'\Omega Z)^{-1}Z'X)^{-1}. \end{aligned}$$

Note that $\beta_{GMM} \longrightarrow \beta$ implies $E(\beta_{GMM}) \longrightarrow \beta$ in the 1st line.

 \approx in the 4th line indicates that Z and X are treated as exogenous variables although they are stochastic.

We assume that $E(uu') = \sigma^2 \Omega$ from the 4th line to the 5th line.

• We derive the asymptotic distribution of β_{GMM} .

From the central limit theorem,

$$\frac{1}{\sqrt{n}}Z'u \longrightarrow N(0, \sigma^2 M_{z\Omega z}).$$

Accordingly, β_{GMM} is asymptotically distributed as:

$$\begin{split} \sqrt{n}(\beta_{GMM} - \beta) &= \left((\frac{1}{n} X'Z) (\frac{1}{n} Z'\Omega Z)^{-1} (\frac{1}{n} Z'X) \right)^{-1} (\frac{1}{n} X'Z) (\frac{1}{n} Z'\Omega Z)^{-1} (\frac{1}{\sqrt{n}} Z'u) \\ &\longrightarrow N(0, \ \sigma^2 (M_{xz} M_{z\Omega z}^{-1} M'_{xz})^{-1}). \end{split}$$

Practically, we use: $\beta_{GMM} \sim N(\beta, s^2(X'Z(Z'\Omega Z)^{-1}Z'X)^{-1}),$

where
$$s^2 = \frac{1}{n-k}(y - X\beta_{GMM})'\Omega^{-1}(y - X\beta_{GMM}).$$

We may use *n* instead of n - k.

Identically and Independently Distributed Errors:

• If u_1, u_2, \dots, u_n are mutually independent and u_i is distributed with mean zero and variance σ^2 , the mean and variance of u^* are given by:

$$E(u^*) = 0$$
 and $V(u^*) = E(u^*u^{*'}) = \sigma^2 Z' Z.$

Using GLS, GMM is obtained as:

$$\beta_{GMM} = (X^{*\prime}(Z'Z)^{-1}X^{*})^{-1}X^{*\prime}(Z'Z)^{-1}y^{*} = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'y.$$

• We derive the asymptotic distribution of β_{GMM} .

From the central limit theorem,

$$\frac{1}{\sqrt{n}}Z'u \longrightarrow N(0,\sigma^2 M_{zz}).$$

Accordingly, β_{GMM} is distributed as:

$$\begin{split} \sqrt{n}(\beta_{GMM} - \beta) &= \Big((\frac{1}{n} X'Z) (\frac{1}{n} Z'Z)^{-1} (\frac{1}{n} Z'X) \Big)^{-1} (\frac{1}{n} X'Z) (\frac{1}{n} Z'Z)^{-1} (\frac{1}{\sqrt{n}} Z'u) \\ &\longrightarrow N \Big(0, \ \sigma^2 (M_{xz} M_{zz}^{-1} M'_{xz})^{-1} \Big). \end{split}$$

Practically, for large n we use the following distribution:

$$\beta_{GMM} \sim N(\beta, s^2 (X'Z(Z'Z)^{-1}Z'X)^{-1}),$$

where $s^2 = \frac{1}{n-k} (y - X\beta_{GMM})'(y - X\beta_{GMM}).$

• The above GMM is equivalent to 2SLS.

 $X: n \times k$, $Z: n \times r$, r > k.

Assume:

$$\frac{1}{n}X'u = \frac{1}{n}\sum_{i=1}^{n}x'_{i}u_{i} \longrightarrow E(x'u) \neq 0,$$
$$\frac{1}{n}Z'u = \frac{1}{n}\sum_{i=1}^{n}z'_{i}u_{i} \longrightarrow E(z'u) = 0.$$

Regress X on Z, i.e., $X = Z\Gamma + V$ by OLS, where Γ is a $r \times k$ unknown parameter matrix and V is an error term,

Denote the predicted value of X by $\hat{X} = Z\hat{\Gamma} = Z(Z'Z)^{-1}Z'X$, where $\hat{\Gamma} = (Z'Z)^{-1}Z'X$.

Review — IV estimator: Consider the regression model is:

$$y = X\beta + u$$
,

Assumption: $E(X'u) \neq 0$ and E(Z'u) = 0.

The $n \times k$ matrix Z is called the instrumental variable (IV).

The IV estimator is given by:

$$\beta_{IV} = (Z'X)^{-1}Z'y,$$

• Note that 2SLS is equivalent to IV in the case of $Z = \hat{X}$, where this Z is different from the previous Z.

This *Z* is a $n \times k$ matrix, while the previous *Z* is a $n \times r$ matrix.

Z in the IV estimator is replaced by \hat{X} .

Then,

$$\beta_{2SLS} = (\hat{X}'X)^{-1}\hat{X}'y = \left(X'Z(Z'Z)^{-1}Z'X\right)^{-1}X'Z(Z'Z)^{-1}Z'y = \beta_{GMM}.$$

GMM is interpreted as the GLS applied to MM.