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1 Review of OLS Estimator

In this section, we riview some contents related to the Ordinary Least Squares (OLS)
estimator. Consider a multiple regression model, where a linear relationship between a
dependent or explained variable and multiple explanatory or independent variables
is considered from an n sample. The linear regression model becomes

yi = β1xi,1 + · · ·+ βi,kxi,k + ui = Xiβ + ui, (1.1)

where Xi = (xi,1, . . . , xi,k) is a 1× k vector for i ∈ {1, . . . , n} and β = (β1, . . . , βk)
′ is a k× 1

vector. Denoting by

y := (y1, . . . , yn)
′ ∈ Rn;

u := (u1, . . . , un)
′ ∈ Rn;

X :=

X1
...
Xk

 =

x1,1 · · · x1,k
...

. . .
...

xn,1 · · · xn,k

 ∈ Rn×k,

we can write the stacked regression system as follows:

y = Xβ + u

⇐⇒

y1
...
yn


︸ ︷︷ ︸
∈Rn

=

x1,1 · · · x1,k
...

. . .
...

xn,1 · · · xn,k


︸ ︷︷ ︸

∈Mn×k(R)

β1
...
βk


︸ ︷︷ ︸

∈Rk

+

u1
...
un


︸ ︷︷ ︸

∈Rn

 .

1.1 OLS Estimator: Derivation

To derive the OLS estimator, we first consider the following minimization problem.� �
Definition 1.1 (OLS Estimator for a Multivariate Regression Model). The OLS esti-
mator (for a multivariate regression model) is a vector βOLS ∈ Rk which satisfies the
minimum distance between y and the vectorial space of Rn generated by X for the Eu-
clidian norm:

βOLS = arg min
β

∥y −Xβ∥22 = arg min
β

(y −Xβ)′ (y −Xβ) .

� �
This definition implies that the OLS estimator is an estimator which minimizes the sum of
the residual sum of squares. We obtain the OLS estimator as follows.� �
Theorem 1.1 (OLS Estimator for a Multivariate Regression Model). Suppose

H1: X1, . . . , Xk are independent,

then the OLS estimator βOLS exists uniquely and satisfies

βOLS = (X ′X)
−1

(X ′y) . (1.2)� �
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Proof. To obtain the OLS estimator, we have to confirm the first and second order condition
for the minimization problem of the following loss function S(β):

arg min
β

∥y −Xβ∥22 =: arg min
β

S(β).

The first order condition becomes

∂

∂β
∥y −Xβ∥22 =

∂

∂β
(y −Xβ)′ (y −Xβ)

= −2X ′y + 2X ′Xβ = 0.

Recall that y′Xβ ∈ R, and thereby y′Xβ = (y′Xβ)′ = β′X ′y(∈ R). Thus, the OLS estimator,
denoted as βOLS, satisfies this equation, and hence

(X ′X) βOLS = X ′y.

From the assumption H1, the inverse matrix (X ′X)−1 exists, with X = (X ′
1, . . . , X

′
k)

′ ∈
Mn×k(R), whose columns are independent so that X ′X is a full rank matrix, and therefore
we can obtain the OLS estimator in the form of Eq. (1.2). The second order condition
becomes

∂

∂β∂β′∥y −Xβ∥22 = 2X ′X.

By assumption H1, X ′X is a positive definite matrix. This shows that the loss function S(β)
has a minimum at the OLS estimator βOLS.

From this theorem, we can confirm that the OLS estimator expressed as Eq. (1.2) is a
random variable since we can rewrite it as follows:

βOLS = β + (X ′X)
−1

X ′u. (1.3)

Therefore, we can consider the mean and variance of the OLS estimator. First, we see the
mean of the OLS estimator, which will be used to prove that the OLS estimator is an unbiased
estimator.� �
Proposition 1.1 (Mean of the OLS Estimator). Suppose

H2: E[ui

∣∣X] = 0 for all i ∈ {1, . . . , n},

then the conditional expectation of the OLS estimator βOLS becomes

E[βOLS|X] = β. (1.4)� �
Proof. Calculating the expectation of β yields

E[βOLS|X] = E
[
(X ′X)

−1
X ′ (Xβ + u)

∣∣∣X]
= β + (X ′X)

−1
X ′ E

[
u
∣∣X]︸ ︷︷ ︸

=0(from H2)

= β,

which proves Eq. (1.4).
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� �
Corollary 1.1 (Unconditional Expectation of the OLS estimator). The conditional ex-
pectation of the OLS estimator is same as the unconditional one:

E[βOLS] = β.

from the law of iterated expectation mentioned below.� �� �
Lemma 1.1 (Law of Iterated Expectation). For any two random variables x and y,

E[y] = Ex [E[y|x]] , (1.5)

where Ex is the expectation over the values of x.� �
The proof is omitted (left as an exercise for students). From this, we have

E[βOLS] = E
[
E[βOLS|X]︸ ︷︷ ︸

=β

]
= E[β] = β.

The variance of the OLS estimator, which is the minimum variance in the class of linear
OLS estimator, becomes as follows.� �
Proposition 1.2 (Variance of the OLS Estimator). Suppose [H1–H2] holds and assume

H3 V[ui|X] = σ2 for all i ∈ {1, . . . , n};

H4 E[uiuj|X] = 0 for all i ̸= j and i, j ∈ {1, . . . , n},

the conditional variance of the OLS estimator βOLS becomes

V[βOLS|X] = σ2 (X ′X)
−1

, (1.6)

and the unconditional variance becomes

V[βOLS] = σ2E
[
(X ′X)

−1
]
. (1.7)� �

Proof. From the Eq, (1.3) and Eq, (1.4),

βOLS − E[βOLS

∣∣X] = βOLS − β = (X ′X)
−1

X ′u.

Therefore,

V[βOLS

∣∣X] = E
[(
βOLS − E[βOLS

∣∣X]
) (

βOLS − E[βOLS

∣∣X]
)′ ∣∣∣X]

= E
[
(X ′X)

−1
X ′uu′X (X ′X)

−1 ∣∣X]
= (X ′X)

−1
X ′E

[
uu′∣∣X]X (X ′X)

−1

= (X ′X)
−1

X ′σ2InX (X ′X)
−1

= σ2 (X ′X)
−1

.

This implies Eq. (1.6) holds. Thus,

V[βOLS] = E
[
V[βOLS

∣∣X]
]
+ V

[
E[βOLS

∣∣X]
]
= E

[
σ2 (X ′X)

−1
]
+ V[β] = σ2E

[
(X ′X)

−1
]
,

which proves Eq. (1.7). See [2] for the proof of the first equality.
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1.2 OLS Estimator: Properties

Here we exhibit some properties of the OLS estimator.� �
Theorem 1.2 (Properties of the OLS Estimator). The OLS estimator obtained above
has the following properties.

(i) unbiasedness Under the assumption H2, the OLS estimator βOLS becomes an
unbiased estimator:

E[βOLS] = β. (1.8)

(ii) consistency Under the following assumption:

H5 X ′X is positive definite;

H6 For all i, for all k, l, the moments of E [|xikxil|] exist and E [X ′X] is p.d.,

as well as [H1–H4], the OLS estimator βOLS = (X ′X)−1 (X ′y) satisfies

βOLS
p−→ β or plim

n→∞
βOLS = β. (1.9)

(iii) efficiency Under the assumption [H1–H4], the variance of the OLS estimator is
the minimum one in the class of linear unbiased estimator.� �

Proof. We can prove the above theorem directly as follows.

(i) unbiasedness This property is shown above (in Corollary 1.1).

(ii) consistency From Eq. (1.3), we have

βOLS = β + (X ′X)
−1

X ′u = β +

(
1

n

n∑
i=1

X ′
iXi

)−1(
1

n

n∑
i=1

X ′
iui

)
.

By taking the probability limit on both sides, we have

plim
n→∞

βOLS = plim
n→∞

[
β +

(
1

n
X ′X

)−1(
1

n
X ′u

)]

= β + plim
n→∞

(
1

n

n∑
i=1

X ′
iXi

)−1

plim
n→∞

(
1

n

n∑
i=1

X ′
iui

)
. (1.10)

Here we apply the convergence of the product of random variables in proba-
bility, which we will discuss in the following. From the weak law of large numbers
(WLLN),

1

n

n∑
i=1

X ′
iXi

p−→ E [X ′
iXi] < ∞; (1.11)

1

n

n∑
i=1

X ′
iui

p−→ E [X ′
iui] = 0(∈ Rk). (1.12)
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E [X ′
iui] = 0 holds from the orthogonal condition with respect to X and u. In

addition,

plim
n→∞

(
1

n

n∑
i=1

X ′
iXi

)−1

= E [X ′
iXi]

−1
(1.13)

holds from the continuous mapping theorem. Thus, substituting Eq. (1.11) and
Eq. (1.12) into Eq. (1.10) results in

plim
n→∞

βOLS = β + E [X ′
iXi]

−1
0 = β,

which indicates that βOLS
p−→ β.

(iii) efficiency As for the efficiency of the OLS estimator, the Gauss–Markov theorem
for a multiple regression model , explained in the appendix A, support the efficiency.

1.3 OLS Estimator: Asymptotic Normality

In this section, we derive the asymptotic distribution of an OLS estimator to observe how
the distribution changes as n → ∞.� �
Theorem 1.3 (Asymptotic Normality of an OLS Estimator). Let βOLS be the OLS esti-
mator obtained under the assumption [H1–H6]. Then, the OLS estimator asymptotically
follows a normal distribution as follows:

√
n(βOLS − β)

d−→ NRk

(
0, σ2 (E [X ′

iXi])
−1
)
.� �

Proof. From Eq. (1.3), we have

βOLS = β + (X ′X)
−1

X ′u

= β +

(
1

n

n∑
i=1

X ′
iXi

)−1(
1

n

n∑
i=1

X ′
iui

)
.

Therefore,

√
n(βOLS − β) =

(
1

n

n∑
i=1

X ′
iXi

)−1(
1√
n

n∑
i=1

X ′
iui

)
. (1.14)

From the Lindeberg–Feller central limit theorem (Lindeberg–Feller CLT) as well as the
weak law of large numbers (WLLN) and continuous mapping theorem, we have(

1

n

n∑
i=1

X ′
iXi

)−1

P−→ E [X ′
iXi]

−1
;(

1√
n

n∑
i=1

X ′
iui

)
=

√
n

(
1

n

n∑
i=1

X ′
iui − 0

)
d−→ NRk (0,V[X ′

iui]) ,
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since from the orthogonal condition,

E

[
1

n

n∑
i=1

X ′
iui

]
=

1

n

n∑
i=1

E[X ′
iui] = 0.

Then,

V[X ′
iui] = E

[
V[X ′

iui

∣∣Xi]
]
+ V

[
E[X ′

iui

∣∣Xi]︸ ︷︷ ︸
=0

]
= E

[
X ′

iV[ui

∣∣Xi]Xi

]
= E

[
X ′

iσ
2Xi

]
= σ2E [X ′

iXi] < ∞,

Therefore, from Eq. (1.14) and the Slutsky’s theorem,

√
n(βOLS − β)

d−→ E [X ′
iXi]

−1
B,

where

B ∼ NRk

(
0, σ2E [X ′

iXi]
)
.

From the following relation:

B ∼ NRk

(
0, σ2E [X ′

iXi]
)
=⇒ E [X ′

iXi]
−1

B ∼ NRk

(
0, σ2E [X ′

iXi]
−1
)
,

we obtain
√
n(βOLS − β)

d−→ NRk

(
0, σ2E [X ′

iXi]
−1
)
.

2 Review of GLS Estimator

In this section, we riview some contents related to the Generalized Least Squares (GLS)
estimator. Consider a linear heteroscedastic model, where one considers a linear re-
lationship between a dependent or explained variable and multiple explanatory or
independent variables from an n sample under the assumption of heteroscedastic error
terms:

y = Xβ + u. (2.1)

The definition is given as follows.� �
Definition 2.1 (Linear Regression with Heteroscedastic Errors). We call a linear het-
eroscedastic model a model where the random vector y linearly depends on k explana-
tory variables X as Eq. (2.1) with the assumptions:

GH1: E[u
∣∣X] = 0;

GH2: V[u
∣∣X] = E[u′u

∣∣X] := Ω = Σ(X, θ) is positive definite;

GH3: X ′Ω−1X is positive definite.� �
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2.1 GLS Estimator: Derivation

To derive the GLS estimator, we first consider the following minimization problem.� �
Definition 2.2 (Generalized Least Squares (GLS) Estimator). The GLS estimator is a
vector βGLS ∈ Rk which satisfies the following minimization problem:

βGLS = arg min
β

∥y −Xβ∥2Ω−1 := arg min
β

(y −Xβ)′Ω−1 (y −Xβ) .

� �
The GLS estimator obtained from the above definition becomes as follows.� �
Theorem 2.1 (Generalized Least Squares (GLS) Estimator). Suppose [H1–H3] holds.
Then the GLS estimator β exists, is unique and satisfies

βGLS =
(
X ′Ω−1X

)−1
X ′Ω−1y. (2.2)� �

Proof. Define Ω−1/2 such that Ω−1/2ΩΩ−1/2 = In. Then, multiplying both sides of Eq. (2.1)
by Ω−1/2 from the left results in

Ω−1/2y = Ω−1/2Xβ + Ω−1/2u.

By denoting y∗ := Ω−1/2y, X∗ := Ω−1/2X and u∗ := Ω−1/2u, we have

y∗ = X∗β + u∗, (2.3)

where u∗ ∼ NRn×n (0, In). Note that u ∼ NRn×n (0,Ω) =⇒ Ω−1/2u ∼ NRn×n (0, In). The
model assumptions can be reported under this transformation:

GH1’: E[u∗
∣∣X∗] = 0;

GH2’: V[u∗
∣∣X∗] := Ω−1/2V[u

∣∣X]Ω−1/2′ = Ω−1/2ΩΩ−1/2′ = In;

GH3’: X∗′X∗ is positive definite.

Thus, the GLS estimator is the OLS estimator of the regression coefficients of y∗ on X∗:(
X∗′X∗

)−1 (
X∗′y∗

)
=
(
XΩ−1/2′Ω−1/2X ′

)−1 (
XΩ−1/2′Ω−1/2y

)
=
(
XΩ−1X ′)−1

XΩ−1y = βGLS,

(2.4)

which proves Eq. (2.2).

To obtain the GLS estimator, we have another method, as in the derivation of the OLS
estimator, by verifying the first and second order conditions of the following minimization
problem:

arg min
β

∥y −Xβ∥2Ω−1 =: arg min
β

S∗(β).

The first order condition becomes

∂

∂β
∥y −Xβ∥2Ω−1 =

∂

∂β
(y −Xβ)′Ω−1 (y −Xβ)

= −2X ′Ω−1y + 2X ′Ω−1Xβ = 0.

8



Recall that y′Ω−1Xβ ∈ R and thereby y′Ω−1Xβ = β′X ′Ω−1y(∈ R). The GLS estimator for
this model, denoted by βGLS, satisfies this equation, and hence(

X ′Ω−1X
)
βGLS = X ′Ω−1y.

From assumption GH3, the inverse matrix (X ′Ω−1X)
−1

exists, with X = (X1, . . . , Xk) ∈
Mn×k(R), and therefore we can obtain the GLS estimator in the form of Eq. (2.2). The
second order condition becomes

∂

∂β∂β′∥y −Xβ∥2Ω−1 = 2X ′Ω−1X.

By assumption GH3, the loss function S∗(β) has a minimum, which is the GLS estimator
βGLS.

From the Theorem 2.1, we can confirm that the GLS estimator expressed as Eq. (2.2) is
a random variable since we can rewrite it as follows:

βGLS = β +
(
X ′Ω−1X

)−1
X ′Ω−1u. (2.5)

Therefore, we can consider the mean and variance of the GLS estimator. First, we see the
mean of the GLS estimator, which will be used to prove that the GLS estimator is an unbiased
estimator.� �
Proposition 2.1 (Mean of the GLS Estimator). Under the assumption [GH1–GH3],
the conditional expectation of the GLS estimator βGLS becomes

E[βGLS|X] = β. (2.6)� �
Proof. Calculating the expectation of βGLS yields

E[βGLS|X] = E
[(
X ′Ω−1X

)−1
X ′Ω−1 (Xβ + u)

∣∣∣X]
= β +

(
X ′Ω−1X

)−1
X ′Ω−1E

[
u
∣∣X]

= β,

which proves Eq. (2.6).� �
Corollary 2.1 (Unconditional Expectation of the GLS estimator). The conditional ex-
pectation of the GLS estimator is same as the unconditional one:

E[βGLS] = β.

from the law of iterated expectation:

E[βGLS] = E
[
E[βGLS|X]

]
= E[β] = β.� �

The variance of the GLS estimator, which is the minimum variance in the class of linear
GLS estimator, becomes as follows.
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� �
Proposition 2.2 (Variance of the GLS Estimator). Under the assumption [GH1–GH3],
the conditional variance of the GLS estimator βGLS becomes

V[βGLS|X] = σ2
(
X ′Ω−1X

)−1
, (2.7)

and the unconditional variance becomes

V[βGLS] = E
[(
X ′Ω−1X

)−1
]
. (2.8)� �

Proof. From the Eq, (2.5) and Eq, (2.6),

βGLS − E[βGLS

∣∣X] = βGLS − β =
(
X ′Ω−1X

)−1
X ′Ω−1u.

Therefore,

V[βGLS

∣∣X] = E
[(
βOLS − E[βGLS

∣∣X]
) (

βOLS − E[βGLS

∣∣X]
)′ ∣∣∣X] = (X ′Ω−1X

)−1
.

This implies Eq. (2.7) holds. Thus,

V[βGLS] = E
[
V[βGLS

∣∣X]
]
+ V

[
E[βGLS

∣∣X]
]
= E

[(
X ′Ω−1X

)−1
]
+ V[β]︸︷︷︸

=0

= E
[(
X ′Ω−1X

)−1
]
,

which proves Eq. (2.8).

2.2 GLS Estimator: Properties

Here we exhibit some properties of the GLS estimator.� �
Theorem 2.2 (Properties of the GLS Estimator). Under the assumption [GH1–GH3],
the GLS estimator obtained above has the following properties:

(i) unbiasedness The GLS estimator βGLS becomes an unbiased estimator:

E[βGLS] = β. (2.9)

(ii) consistency Under the additional assumption:

GH4: A = E[X ′
iΩ

−1Xi] is non singular;

as well as [GH1–GH3], the GLS estimator βGLS satisfies

βGLS
p−→ β or plim

n→∞
βGLS = β. (2.10)

(iii) efficiency The variance of the GLS estimator is the minimum one in the class of
linear unbiased estimator.� �

Proof. We can derive these properties via a similar calculation in the derivation of the OLS
estimator.
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(i) unbiasedness This property is shown above (in Remark 2.1).

(ii) consistency By taking the probability limit on both sides of Eq. (2.4), we have

plim
n→∞

βGLS = plim
n→∞

[
β +

(
X ′Ω−1X

)−1 (
X ′Ω−1u

)]
= β + plim

n→∞

(
1

n

n∑
i=1

X∗′
i X

∗
i

)−1

plim
n→∞

(
1

n

n∑
i=1

X∗′
i u

∗
i

)

= β + plim
n→∞

(
1

n

n∑
i=1

X ′
iΩ

−1Xi

)−1

plim
n→∞

(
1

n

n∑
i=1

X ′
iΩ

−1ui

)
. (2.11)

Here we apply the convergence of the product of random variables in proba-
bility. From the weak law of large numbers (WLLN),

1

n

n∑
i=1

X ′
iΩ

−1Xi
p−→ E

[
X ′

iΩ
−1Xi

]
< ∞; (2.12)

1

n

n∑
i=1

X ′
iΩ

−1ui
p−→ E

[
X ′

iΩ
−1ui

]
= 0(∈ Rk). (2.13)

We can prove E [X ′
iΩ

−1ui] = 0 by using the vec operator with the orthogonal
condition with respect to X and u:

vec E
[
X ′

iΩ
−1ui

]
= E

[
vec

(
X ′

iΩ
−1ui

)]
= E

[
(ui ⊗X ′

i) vec Ω−1
]
= 0.

In addition,

plim
n→∞

(
1

n

n∑
i=1

X ′
iΩ

−1Xi

)−1

= E
[
X ′

iΩ
−1Xi

]−1
(2.14)

holds from the continuous mapping theorem. Thus, substituting Eq. (2.12) and
(2.13) into Eq. (2.11) results in

plim
n→∞

βGLS = β + E
[
X ′

iΩ
−1Xi

]−1
0 = β,

which proves that βGLS
p−→ β.

(iii) efficiency As for the efficiency of the GLS estimator, the Gauss–Markov theorem
supports the efficiency. Note that βGLS is efficient than βOLS(, which is shown in the
Appendix B).

2.3 GLS Estimator: Asymptotic Normality

In this section, we derive the asymptotic distribution of the GLS estimator to observe how
the distribution changes as n → ∞.
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� �
Theorem 2.3 (Asymptotic Normality of an GLS Estimator). Let βGLS be the GLS
estimator obtained under the assumption [GH1–GH3]. Suppose

GH5: B = E[X ′
iΩ

−1uiuiΩ
−1Xi] exists;

as well as [GH1–GH4]. Then, the GLS estimator asymptotically follows a normal
distribution as follows:

√
n(βGLS − β)

d−→ NRk

(
0,A−1BA−1

)
.� �

Proof. From Eq. (2.5), we have

βGLS = β +
(
X ′Ω−1X

)−1
X ′u

= β +

(
1

n

n∑
i=1

X ′
iΩ

−1Xi

)−1(
1

n

n∑
i=1

X ′
iΩ

−1ui

)
.

Therefore, rewriting results in

√
n(βGLS − β) =

(
1

n

n∑
i=1

X ′
iΩ

−1Xi

)−1(
1√
n

n∑
i=1

X ′
iΩ

−1ui

)
. (2.15)

From the Lindeberg–Feller central limit theorem (Lindeberg–Feller CLT) as well as the
weak law of large numbers (WLLN) and continuous mapping theorem, we have(

1

n
X ′

iΩ
−1Xi

)−1
P−→ E

[
X ′

iΩ
−1Xi

]−1
=: A;(

1√
n

n∑
i=1

X ′
iΩ

−1ui

)
=

√
n

(
1

n

n∑
i=1

X ′
iΩ

−1ui − 0

)
d−→ NRk

(
0,V[X ′

iΩ
−1ui]

)
,

since from the orthogonal condition,

E

[
1

n

n∑
i=1

X ′
iΩ

−1ui

]
=

1

n

n∑
i=1

E[X ′
iΩ

−1ui] = 0.

Then,

V[X ′
iΩ

−1ui] = E
[
X ′

iΩ
−1uiuiΩ

−1Xi

]
= B < ∞.

Therefore, from Eq. (2.15) and the Slutsky’s theorem,

√
n(βGLS − β)

d−→ A−1Z,

where

Z ∼ NRk (0,B) .

From the following relation:

Z ∼ NRk (0,B) =⇒ A−1B ∼ NRk

(
0,A−1BA−1

)
,

we obtain
√
n(βGLS − β)

d−→ NRk (0,B) =⇒ A−1B ∼ NRk

(
0,A−1BA−1

)
.
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Appendix

A Gauss–Markov Theorem for a Multiple Regression

Model

Here we will obtain a general result for the class of linear unbiased estimators of β. It can
be conducted via a direct method.� �
Theorem A.1 (Gauss–Markov Theorem for a Multiple Regression Model). Under the
assumption [H1–H4], the OLS estimater βOLS of the multiple regression model

yi = Xiβ + ui, (A.1)

for all i ∈ {1, . . . , n} is of minimum variance among the class of linear unbiased estimator.� �
Proof. Let us assume another unbiased linear estimator of β, say β̃. Thus, there exists a
matrix A ∈ Rk×n such that β̃ = Ay. Since β̃ is an unbiased estimator,

E[β̃] = β (A.2)

holds, which yields

E [A {Xβ + u}] = β ⇐⇒ AXβ = β. (A.3)

Therefore, AX = Ik must be satisfied. Moreover, from the equation:

β̃ − E[β̃] = A {y −Xβ} = Au. (A.4)

The variance V[β̃] becomes

V[β̃] = V [Au] = AV [u]A′ = A
(
σ2In

)
A′ = σ2AA′, (A.5)

from the assumption V [u] = σ2In. Using the projection matrix:

MX := In −X (X ′X)
−1

X ′
(
⇐⇒ In = MX +X (X ′X)

−1
X ′
)
, (A.6)

we can rewrite Eq. (A.5) as follows:

V[β̃] = A
(
σ2In

)
A′

= σ2A
(
X (X ′X)

−1
X ′ +MX

)
A′

= σ2
(
AX (X ′X)

−1
X ′A′ + AMXA

′
)
.

Substituting AX = Ik and V[βOLS] = σ2 (X ′X)−1 into the above equation results in

V[β̃] = V[βOLS] + σ2AMXA
′ ⇐⇒ V[β̃]− V[βOLS] = σ2AMXA

′.

Hence, the difference of ith diagonal elements of variance–covariance matrices becomes

V[β̃]ii − V[βOLS]ii = a′iMai ≥ 0

for any column vector ai in A for i ∈ {1, . . . , k}, which proves the theorem.
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B Comparison of the OLS and GLS Estimator

We compare the efficiency between OLS and GLS estimators. Using the results of Section 2,
under the assumption [GH1–GH3], we have

V[βOLS|x] = (x′x)
−1

x′Ωx (x′x)
−1

;

V[βGLS|x] =
(
x′Ω−1x

)−1
.

Then, subtracting V[βGLS|x] from V[βOLS|x] results in

V[βOLS|x]− V[βGLS|x] = (x′x)
−1

x′Ωx (x′x)
−1 −

(
x′Ω−1x

)−1

= (x′x)
−1

x′Ωx (x′x)
−1 −

(
x′Ω−1x

)−1
x′Ω−1ΩΩ−1x

(
x′Ω−1x

)−1

=
{
(x′x)

−1
x′ −

(
x′Ω−1x

)−1
x′Ω−1

}
Ω
{
x (x′x)

−1 − Ω−1x
(
x′Ω−1x

)−1
}

=
{
(x′x)

−1
x′ −

(
x′Ω−1x

)−1
x′Ω−1

}
Ω
{
(x′x)

−1
x′ −

(
x′Ω−1x

)−1
x′Ω−1

}′

=: AΩA′,

where Ω is positive definite. Therefore, if Ω ̸= In, then AΩA′ also becomes positive definite.
As a consequence,

V[βOLS|x]ii − V[βGLS|x]ii > 0,

for all i ∈ {1, . . . , n}. These results infer that βGLS is more efficient than βOLS.
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