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1 Preliminary

Today, we review the introductory topics of the maximum likelihood estimation and

examples of the estimation.

2.1 Maximum Likelihood Estimation

2.2 The Fisher Information

2.3 The Cramér–Rao Lower Bound

2.4 Asymptotic distribution of MLE

2.5 Example of the ML Method

2 Maximum Likelihood Estimator

Suppose that X1, X2, . . . , Xn are i.i.d. random variables with common probability

density function f(x; θ). For now, assume that θ is an unknown vector parameter. The

joint density of these i.i.d. observations obtained from this process is

f(x1, x2, · · · , xn|θ) =
n∏

i=1

f(xi; θ) =: L(θ;x). (1)

We then have, by taking the logarithm, the following equation:

logL(θ;x) :=
n∑

i=1

log f(xi; θ). (2)

This function is called log likelihood function of X.

2.1 Definition of Maximum Likelihood Estimator (MLE)

The definition of the maximum likelihood estimator (MLE) is given by as follows.� �
Definition 2.1 (Maximum Likelihood Estimator (MLE)). The maximum likeli-

hood estimator (MLE), denoted by θ̂, maximizes the likelihood function. In other

words, MLE satisfies the following conditions.

∂ logL(θ;x)

∂θ

∣∣∣
θ=θ̂

= 0;

∂2 logL(θ;x)

∂θ∂θ′

∣∣∣
θ=θ̂

≺ 0.� �
In short, we can say

logL(θ̂) ≥ logL(θ)
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is satisfied for any θ ∈ Θ where Θ represents the set of all estimators obtained from the

log likelihood function. Note that θ̂ also maximizes the likelihood function since the log

function is an increasing function.

2.2 Fisher’s information matrix

Assume that the log likelihood function is continuously twice differentiable and the

integral of the log likelihood function is also continuously differentiated twice.� �
Definition 2.2. Fisher’s information matrix is defined as

I(θ) := −E
[
∂2 logL(θ;X)

∂θ∂θ′

]
= Var

[
∂ logL(θ;X)

∂θ

]
.� �

Proof. We begin with the identity ∫
L(θ;x)dx = 1. (3)

Take the derivative of both sides of Eq. (3) with respect to θ ∈ Rk×1, we have

∂

∂θ

∫
L(θ;x)dx = 0.

By changing the order of the integral, the above equation can be rewritten as∫
∂

∂θ
L(θ;x)dx = 0.

This relationship can be rewritten as∫
∂ logL(θ;x)

∂θ
L(θ;x)dx = 0. (4)

via the derivative of log function: d
dx log(x) = 1

x for x ∈ R++ := (0,∞). Writing the

above equation as an expectation, we obtain

E
[
∂ logL(θ;X)

∂θ

]
= 0. (5)

Note that L(θ;x) is a probability density function and
∫
g(x)L(θ;x)dx = E[g(X)].

Again, defferentiating Eq. (4) with respect to θ′ ∈ R1×k, we can derive∫
∂2 logL(θ;x)

∂θ∂θ′
L(θ;x)dx+

∫
∂ logL(θ;x)

∂θ

∂ logL(θ;x)

∂θ′
L(θ;x)dx︸ ︷︷ ︸

I(θ)

= 0.

Finally, we have

I(θ) := −E
[
∂2 logL(θ;X)

∂θ∂θ′

]
= Var

[
∂ logL(θ;X)

∂θ

]
,

because of Eq. (5).
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2.3 The Cramér–Rao Lower Bound

In this subsection, we establish a remarkable inequality called the Cramér–Rao

lower bound which gives a lower bound on the variance of any unbiased estimator.� �
Theorem 2.3 (Cramér–Rao Lower Bound). Suppose that s(X) is a unbiased es-

timator of θ (i.e. E[s(X)] = θ), then we have the following inequality:

Var[s(X)] ≥ I(θ)−1. (6)� �
Proof. For simplicity, let θ and s(X) be scalar. First, taking the expectation of s(X),

we have

E[s(X)] =

∫
s(x)L(θ;x)dx.

By taking the derivative of E[s(X)] with respect to θ ∈ R, the following equalities hold:

d

dθ
E[s(X)] =

∫
s(x)

d logL(θ;x)

dθ
L(θ;x)dx

= E
[
s(X)

d logL(θ;X)

dθ

]
= Cov

(
s(X),

d logL(θ;x)

dθ

)
,

thanks for the following relations: since E
[
d logL(θ;x)

dθ

]
= 0,

Cov

(
s(X),

d logL(θ;x)

dθ

)
= E

[
s(X)

d logL(θ;X)

dθ

]
− E[s(X)]E

[
d logL(θ;X)

dθ

]
= E

[
s(X)

d logL(θ;X)

dθ

]
.

Recall that s(X) is a unbiased estimator of θ, so that E[s(X)] = θ, and thereby

1 = Cov

(
s(X),

d logL(θ;X)

dθ

)
Remind that we have

− 1 ≤
Cov

(
s(X), d logL(θ;X)

dθ

)
√

Var[s(X)]

√
Var

[
d logL(θ;X)

dθ

] ≤ 1

⇐⇒− 1 ≤ 1√
Var[s(X)]

√
Var

[
d logL(θ;X)

dθ

] ≤ 1,

Therefore, we can derive the following inequality:

Var[s(X)] ≥ V

[
d logL(θ;X)

dθ

]−1

= I(θ)−1.

The similar derivation yields the same inequality for the multivariate case.
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2.4 Asymptotic Distribution of MLE

The MLE has asymptotic normality as stated in the following theorem.� �
Theorem 2.4 (Asymptotic Distribution of MLE). Suppose that θ̂ is the MLE and

θ is the true value of the parameter. Then, the asymptotic distribution of the MLE

is represented as follows:

√
n(θ̂ − θ) → N

(
0,Σ−1

)
, (7)

where 1
nI(θ) → Σ as n → ∞.� �

Proof. By the first–order approximation of ∂ logL(θ̂;x)
∂θ = 0 around θ̂ = θ by the Taylor

expansion, we have

∂ logL(θ;x)

∂θ
+

∂2 logL(θ;x)

∂θ∂θ′
(θ̂ − θ) = 0.

Rewriting the above equation, we establish the following equation

√
n(θ̂ − θ) =

(
− 1

n

∂2 logL(θ;x)

∂θ∂θ′

)−1
1√
n

∂ logL(θ;x)

∂θ
. (8)

Here, by applying the following Lindeberg–Feller Central Limit Theorem

(Lindeberg–Feller CLT), we can derive the asymptotic distribution of MLE.� �
Theorem 2.5 (Lindeberg–Feller Central Limit Theorem for a Multivariate Ran-

dom Variable). In the case where Xi ∈ Rk is a vector of random variable with

mean µ ∈ Rk and variance Σi ∈ Rk, the Lindeberg–Feller CLT is given by

√
n(X̄ − µ) =

1√
n

n∑
i=1

(Xi − µ)
d→ N(0,Σ), (9)

where

1

n

n∑
i=1

Xi =: X; lim
n→∞

1√
n

n∑
i=1

Σi = Σ < ∞. (10)

Note that E(X̄) = µ and nVar(X̄) → Σ as n goes to infinity.� �
In this case, remind that we need the following expectation and variance:

E

[
1

n

n∑
i=1

∂ log f(Xi; θ)

∂θ

]
; (11)

Var

[
1

n

n∑
i=1

∂ log f(Xi; θ)

∂θ

]
, (12)
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where

n∑
i=1

∂ log f(Xi; θ)

∂θ
=

∂ logL(θ;x)

∂θ
.

In addition, define the variance of ∂ log f(Xi;θ)
∂θ as Σi, then we can say I(θ) =

∑n
i=1 Σi in

the case that all Xis are mutually independent. Note also that

E
[
∂ logL(θ;X)

∂θ

]
= 0;

Var

[
∂ logL(θ;X)

∂θ

]
= I(θ).

Moreover, nVar
[
1
n

∑n
i=1

∂ logL(θ;Xi)
∂θ

]
= 1

nI(θ) → Σ as n → ∞.

In Eq. (8), we can calculate

1

n

∂2 logL(θ;x)

∂θ∂θ′
p−→ 1

n
E
[
∂2 logL(θ;X)

∂θ∂θ′

]
; (13)

1√
n

∂ logL(θ;x)

∂θ

d→ N(0,Σ).

Recall that we use the Weak Law of Large Numbers in Eq. (13) and 1
nI(θ) →

Σ as n → ∞. Therefore, we can derive the asymptotic distribution by the Slutsky’s

theorem as follows:

√
n(θ̂ − θ)

d→ N(0,Σ−1).

2.5 Example of the ML Method

The following discussion is explained in Chapter14, Example 14.2 & 14.3 of Greene

(2012). Suppose the case that Xi ∼ N(µ, σ2) for i ∈ {1, . . . , n}. The likelihood of the

each observed variable xi (i = 1, 2, · · · , n) is given by

L(θ;xi) =
1√
2πσ

exp

{
− (xi − µ)2

2σ2

}
,

Here, we assume that the parameter vector is θ = (µ, σ2). By taking the logarithm, the

above equation is rewritten as follows:

logL(θ;xi) = −1

2
log2π − logσ − (xi − µ)2

2σ2
.

Recall that we must optimize
∑n

i=1 logL(θ;xi) such that:

n∑
i=1

logL(xi; θ) = (constant)− nlogσ −
n∑

i=1

(xi − µ)2

2σ2
.
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Therefore, when we estimate µ, the first order condition is given as follows:

d
∑n

i=1(xi − µ)2

dµ
= −2

n∑
i=1

(xi − µ) = 0,

and µ̂ = 1
n

∑n
i=1 xi, which coincides with the OLS estimator. In the same manner, we

have an estimator of the variance as

σ̂2 =
1

n

n∑
i=1

(xi − µ)2.

Note that the MLE of the variance is not the same as the OLS estimator and therefore

this is not an unbiased estimator (or this estimator is a biased one). The second order

conditions are:

d2logL(x; θ)

dµdµ
= − n

σ2
;

d2logL(x; θ)

dσ2dσ2
=

n

2σ4
− 1

σ6

n∑
i=1

(xi − µ)2;

d2logL(x; θ)

dµdσ2
= − 1

σ4

n∑
i=1

(xi − µ).

By deriving the second order conditions, we have the informaton matrix as follows:(
E
[
∂2 logL(x; θ)

∂θ∂θ′

])−1

=

(
σ2/n 0
0 2σ4/n

)
.
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