
Econometrics II TA Session #3∗

Makoto SHIMOSHIMIZU†

Room 4, October 29, 2019

Contents

1 Qualitative Dependent Variable 2
1.1 What is “Qualitative Dependent Variable”? . . . . . . . . . . . . . . . . . . 2
1.2 Models for Qualitative Dependent Variable . . . . . . . . . . . . . . . . . . . 2

2 Discrete Choice Model 2
2.1 Binary Choice Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 The Probit and Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Another Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Marginal Effect (“When xi increase by 1%, how much yi would increase?”) . 6

3 Some Applications 6
3.1 Ordered Probit or Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Multinomial Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Limited Dependent Variable Model 7
4.1 Types of Limited Dependent Variable Models . . . . . . . . . . . . . . . . . 8
4.2 Truncated Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A Logistic Distribution: More Detail 10
A.1 Definition and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
A.2 Genesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
A.3 Mean, Variance and Moment Generating Function . . . . . . . . . . . . . . . 11

B Derivation of Eq. (4.5) 12

∗All comments welcome!
†E-mail: vgm067sm@student.econ.osaka-u.ac.jp

1



1 Qualitative Dependent Variable

1.1 What is “Qualitative Dependent Variable”?

In most cases, the dependent variable such as

• temperature

• individual income

is continuous or assumed to be continuous. In this case, yi for i ∈ {1, . . . , n} is continuous
and are supposed to take any value in R, i.e., yi ∈ (−∞,∞). However, we may encounter
some variables which take only several values. Examples are:

• male or female;

• smoking or not smoking.

Such cases admit

yi =

{
0 if male (smoking);

1 if female (not smoking),

which does not allow yi to be continuous. We thus learn the case that these variables are
dependent variables.

1.2 Models for Qualitative Dependent Variable

We here learn mainly three models used for the analysis of qualitative dependent variables:

(i) Discrete Choice Model

(ii) Limited Dependent Variable Model

(iii) Count Data Model

2 Discrete Choice Model

In this section, the structure of a discrete choice model is explained. The analysis of individual
choice that is the main focus of the microeconometrics is fundamentally about modeling
discrete outcomes such as purchase decisions, voting behavior, places to live, and responses
to survey questions about the strength of preferences or about the self–assessed health or
well–being. Here we focus on modeling probabilities and using econometric tools to make
probabilistic statements about the occurrence of these events.

2.1 Binary Choice Model

The study of binary choice model allows us to focus on appropriate specification, estima-
tion and use of models for the probabilities of events, where in most cases, the “event” is an
individual’s choice among a set of two alternatives.

Consider the following regression model:

y∗i = Xiβ + ui, ui ∼ (0, σ2), i = 1, 2, . . . , n, (2.1)
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where y∗ is unobserved, but yi is observed as 0 or 1,

yi =

{
1, if y∗i > 0,

0, if y∗i ≤ 0.
(2.2)

Consider the probability that yi takes 1, i.e.

P(yi = 1) = P(y∗i > 0)

= P(ui > −Xiβ)

= P(u∗
i > −Xiβ

∗)

= 1− P (u∗
i ≤ −Xiβ

∗)

= 1− F (−Xiβ
∗)

= F (Xiβ
∗) (2.3)

where u∗
i and β∗ are defined as

u∗
i =

ui

σ
, β∗ =

β

σ

The last equality of Eq. (2.3) comes from the assumption of symmetricity of the distri-
bution of u∗

i , i.e., 1− F (−x) = F (x). Note that we can estimate β∗ but cannot estimate β
and σ separately. The cumulative distribution function is given by

F (x) =

∫ x

−∞
f(z)dz, (2.4)

where f(x) stands for the probability density function.

2.2 The Probit and Logit Model

Here we introduce the probit and logit model. The normal distribution has been used in
many analysis, giving rise to the probit model,

F (x) =

∫ x

−∞

1√
2π

exp

(
−1

2
z2
)
dz =: Φ(x). (2.5)

The function Φ(x) is a commonly used notation for the standard normal distribution function,
that is,

Φ(x) =

∫ x

−∞

1√
2π

exp

(
−1

2
z2
)
dz. (2.6)

On the other hand, partly because of mathematical convenience, the logistic distribution,

F (x) =
1

1 + exp(−x)
=: Λ(x), (2.7)

has also been used in many aplications. For this distribution function, the probability density
function f(x) becomes

f(x) =
exp(−x)

(1 + exp(−x))2
. (2.8)
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This model is called the logit model. We can also consider other models for u∗
i which do

not assume to be symmetric. For example, the Gumbel distribution,

P(Y = 1) = exp{− exp{−Xβ}},

and complementary log log model,

P(Y = 1) = 1− exp{− exp{Xβ}},

have also been employed. Although other distributions have been suggested, the probit and
logit models are still the most common frameworks used in econometric applications.

2.3 Likelihood Function

yi for i ∈ {1, . . . , n} follow the following Bernouli distribution f(yi) as follows:

f(yi) = (P(yi = 1))yi(1− P(yi = 1))1−yi

= (F (Xiβ
∗))yi(1− F (Xiβ

∗))1−yi

Here we review the definition of the Bernouli distribution.� �
Definition 2.1 (Bernouli Distribution). The Bernouli random variable X : Ω → {0, 1}
has a following probability mass function, denoted by f(x):

f(x) := px(1− p)x, x = 0, 1.

Then, the mean and variance of X are:

µ := E[X] =
1∑

i=0

xf(x) = 0× (1− p) + 1× p = p;

σ2 := V[X] =
1∑

i=0

(x− µ)2f(x) = (0− p)2(1− p) + (1− p)2p = p(1− p).

� �
According to the definition of the Bernouli distribution, we obtain the likelihood function as
follows:

L(β∗) = f(y1, y2, . . . , yn) =
n∏

i=1

f(yi) =
n∏

i=1

(F (Xiβ
∗))yi(1− F (Xiβ

∗))1−yi .

Then the log–likelihood function becomes:

logL(β∗) =
n∑

i=1

{yi logF (Xiβ
∗) + (1− yi) log(1− F (Xiβ

∗))} . (2.9)

Solving the maximization problem of logL(β∗) with respect to β∗, we can derive the F.O.C.
as follows:

∂ logL(β∗)

∂β∗ =
n∑

i=1

(
yiX

′
if(Xiβ

∗)

F (Xiβ∗)
− (1− yi)X

′
if(Xiβ

∗)

1− F (Xiβ∗)

)
=

n∑
i=1

X ′
if(Xiβ

∗)(yi − F (Xiβ
∗))

F (Xiβ∗)(1− F (Xiβ∗))
= 0. (2.10)
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Then the S.O.C. is given by

∂2 logL(β∗)

∂β∗∂β∗′ =
n∑

i=1

X ′
iXif

′
i(yi − Fi)

Fi(1− Fi)
−

n∑
i=1

X ′
iXif

2
i

Fi(1− Fi)
−

n∑
i=1

X ′
ifi(yi − Fi)

Xifi(1− 2Fi)

(Fi(1− Fi))2
,

(2.11)

and Eq. (2.11) is negative definite. When we adopt the Logit model, from Eq. (2.10) we can
calculate in more detail:

∂L(β∗)

∂β∗ =
n∑

i=1

X ′
if(Xiβ

∗)(yi − F (Xiβ
∗))

F (Xiβ∗)(1− F (Xiβ∗))

=
n∑

i=1

X ′
i

exp(−Xiβ
∗)

(1 + exp(−Xiβ∗))2

(
yi −

1

1 + exp(−Xiβ∗)

)
1

1 + exp(−Xiβ∗)

exp(−Xiβ
∗)

1 + exp(−Xiβ∗)

=
n∑

i=1

X ′
i

(
yi −

1

exp(−Xiβ∗)

)
= 0.

For maximization, the method of scoring is given by

β∗(j+1) = β∗(j) +

(
n∑

i=1

X ′
iXi(f

(j)
i )2

F
(j)
i (1− F

(j)
i )

)−1 n∑
i=1

X ′
if

(j)
i (yi − F

(j)
i )

F
(j)
i (1− F

(j)
i )

. (2.12)

Variance of MLE β̂∗ is I(β̂∗)−1 where

I(β̂∗) = −E

[
∂2 logL(β̂∗)

∂β∗∂β∗′

]
=

n∑
i=1

X ′
iXif̂

2
i

F̂i(1− F̂i)
. (2.13)

We can estimate β̂∗ and test the significance of β̂∗.

2.4 Another Interpretation

This maximization problem is equivalent to the nonlinear least squares estimation problem
from the following regression model:

yi = F (Xiβ
∗) + ui, (2.14)

where

ui = yi − Fi =

{
1− Fi w.p. P(yi = 1);
0− Fi w.p. P(yi = 0).

(2.15)

Therefore, the mean and variance of ui are:

E[ui] = (1− Fi)︸ ︷︷ ︸
value

Fi︸︷︷︸
probability

+(−Fi)︸ ︷︷ ︸
value

(1− Fi)︸ ︷︷ ︸
probability

= 0 (2.16)

σ2
i = V(ui) = E[u2

i − E(ui)
2] = E(u2

i )

= (1− Fi)
2︸ ︷︷ ︸

value

Fi︸︷︷︸
probability

+(−Fi)
2︸ ︷︷ ︸

value

(1− Fi)︸ ︷︷ ︸
probability

= Fi(1− Fi). (2.17)
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Then the weighted least squares method solves the following minimization problem:

min
β∗∈Rk

n∑
i=1

(yi − F (Xiβ
∗))2

σ2
i

, (2.18)

which corresponds to a generalized least squares (GLS) method. Then, the first order
condition becomes:

n∑
i=1

2X ′
if(Xiβ

∗)(yi − F (Xiβ
∗))

σ2
i

= 0 (2.19)

This is equivalent to the first order condition of MLE.

2.5 Marginal Effect (“When xi increase by 1%, how much yi would
increase?”)

When we employ the OLS method (y = x1β1 + · · ·+ xkβk + ϵ), the marginal effect becomes
“βi%.” When we conduct the probit or logit estimation, the result is not so straightforward
as the OLS method. The model is represented as follows:

y∗i = P(yi = 1) + ui = F (Xiβ
∗) + ui. (2.20)

By differentiating this equation with respect to Xi,j, the jth independent variable of individ-
ual i for j ∈ {1, . . . , k} and i ∈ {1, . . . , n}, we obtain

dP(yi = 1)

dXi,j

=
dF (Xiβ

∗)

dXi,j

= β∗
j f(Xiβ

∗). (2.21)

Where f(Xiβ
∗) is probability density function of Xiβ

∗.

3 Some Applications

In this section, we show some applications of discrete choice models.

3.1 Ordered Probit or Logit Model

The Ordered Probit or Logit Model is the case where yi is observed as 1, 2, . . . ,m shown
as follows:

yi =


1 y∗i < a1
2 a1 ≤ y∗i < a2
...
m am−1 ≤ y∗i

(3.1)

Then the probability density function of yi is given by

f(yi) = (P(yi = 1))I{i=1}(P(yi = 2))I{i=2} · · · (P(yi = m))I{i=m} ,
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where

P(yi = j) = P(aj−1 ≤ y∗i < aj)

= P(y∗i < aj)− P(y∗i < aj−1)

= P(ui < aj −Xiβ)− P(ui < aj−1 −Xiβ)

= F (aj −Xiβ)− F (aj−1 −Xiβ)

and

I{i=j} =

{
1 if yi = j
0 otherwise

for j = 1, 2, · · · ,m. Note that a0 = −∞, am = ∞. The Likelihood function thus becomes:

L(β) =
n∏

i=1

f(yi) (3.2)

3.2 Multinomial Logit Model

This model is constructed for an unorderd choice model which applies when data are indi-
vidual specific. For example,

yi =



0 menial;

1 blue collar;

2 craft;

3 white collar;

4 professional.

(3.3)

When yi ∈ {0, 1, . . . ,m}, the individual has m+ 1 choices, i.e. j = 0, 1, 2, . . . ,m:

P(yi = j) =
exp(Xiβj)∑m
j=0 exp(Xiβj)

=: Pij (3.4)

for β0 = 0 (The case where m = 1 corresponds to a bivariate logit model). Note that

log
Pij

Pi0

= Xiβj. (3.5)

The log likelihood function is

logL(β1, β2, . . . , βm) :=
n∑

i=1

m∑
j=0

I{yi=j} logPij. (3.6)

4 Limited Dependent Variable Model

This section is concerned with a brief exposition of “truncation” and “censoring” and then
explains the Truncated regression model in detail. The truncation effects arise when one
attempts to make inferences about a larger population from a sample that is drawn from a
distinct subpopulation. On the other hand, the censoring of a range of values of the variable
of interest introduces a distortion into conventional statistical results that are similar to that
of truncation.
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4.1 Types of Limited Dependent Variable Models

There are mainly three models relevant with limited dependent variabel models:

(i) Truncated Regression Model

(ii) Tobit Model

(iii) Consored Data Model

In the following, we learn how to obtain the estimator of the Truncated Regression Model,
where the truncated mean of a normal distribution plays a fundamental role.

4.2 Truncated Regression Model

In this subsection, we are concerned with inferring the characteristics of a full population
from a sample drawn from a restricted part of that population. Here we consider the following
model:

yi = Xiβ + ui, ui ∼ N(0, σ2)

and only yi > a is observed (i.e. the data yi ≤ a is not observed). Then, the conditional
cummulative distribution and probability density function of the error term ui becomes

F (ui|yi > a) = F (ui|ui > a−Xiβ) =

∫ ∞

a−Xiβ

f(ui)

1− F (a−Xiβ)
dui;

f(ui|yi > a) = f(ui|ui > a−Xiβ) =
f(ui)

1− F (a−Xiβ)
,

and the conditional expectation of yi is given by

E[ui|yi > a] = E[ui|ui > a−Xiβ] =

∫ ∞

a−Xiβ

ui
f(ui)

1− F (a−Xiβ)
dui. (4.1)

Then we have the following facts.� �
Proposition 4.1. Using the following standard normal density and distribution func-
tions:

ϕ(x) = (2π)−1/2 exp

{
−1

2
x2

}
;

Φ(x) =

∫ x

−∞
(2π)−1/2 exp

{
−1

2
z2
}
dz =

∫ x

−∞
ϕ(z)dz,

the cummulative distribution and probability density function become

f(x) = (2πσ2)−1/2 exp

{
− 1

2σ2
x2

}
=

1

σ
ϕ
(x
σ

)
; (4.2)

F (x) =

∫ x

−∞
(2πσ)−1/2 exp

{
− 1

2σ2
z2
}
dz = Φ

(x
σ

)
. (4.3)

� �
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Proof. The direct calculation yields Eq. (4.2). As for Eq. (4.3), using the change of variables,
we have

F (x) =

∫ x

−∞
(2πσ)−1/2 exp

{
− 1

2σ2
z2
}
dz

=

∫ x/σ

−∞
(2π)−1/2 exp

{
−1

2
w2

}
dw

= Φ(
x

σ
),

which proves Eq. (4.2).

Then, for a truncated normal random variable, we have the following theorem.� �
Theorem 4.1 (Moments of the Truncated Normal Distribution). If X ∼ N(µ, σ2) and
a is a constant, then

E[X|X > a] = µ+ σλ(α); (4.4)

V[X|X > a] = σ2[1− δ(α)], (4.5)

where α = (a − µ)/σ, λ(α) = ϕ(α)/[1 − Φ(α)] and δ(α) = λ(α)[λ(α) − α]. λ(α) =
ϕ(α)/[1−Φ(α)] is called the inverse Mill’s ratio or hazard function for the standard
normal distribution.� �

Proof. For the probability distribution function, the following relations hold:

f(x) =
1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
⇐⇒ d

dx
f(x) = −(x− µ)

σ2
f(x) = − x

σ2
f(x) +

µ

σ2
f(x)

⇐⇒ σ2df(x) = −xf(x)dx+ µf(x)dx

⇐⇒ xf(x)dx = µf(x)dx− σ2df(x). (4.6)

Thus, using Eq. (4.6), we can calculate

E[X|X > a] =

∫ ∞

a

x
f(x)

1− Φ(α)
dx

=
1

1− Φ(α)

∫ ∞

a

xf(x)dx

=
1

1− Φ(α)

∫ ∞

a

{
µf(x)dx− σ2df(x)

}
=

1

1− Φ(α)

{∫ ∞

a

µf(x)dx−
∫ ∞

a

σ2df(x)

}
=

1

1− Φ(α)

{
µ[F (x)]∞a − σ2[f(x)]∞a

}
=

1

1− Φ(α)

{
µ(1− Φ(a))− σ2(−f(a))

}
= µ+ σ2 f(a)

1− Φ(α)
.
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Using Eq. (4.2), the above equation yields

E[X|X > a] = µ+ σ2
1
σ
ϕ
(
a−µ
σ

)
1− Φ(α)

= µ+ σ
ϕ(α)

1− Φ(α)
, (4.7)

which completes the proof.

Therefore, the conditional expectation of yi given yi = Xiβ + ui > a for i ∈ {1, . . . , n} is
given by

E[yi|yi > a] = E[Xiβ + ui|Xiβ + ui > a]

= Xiβ + E[ui|ui > a−Xiβ]

= Xiβ + E[ui]︸︷︷︸
=0

+σ
ϕ(a−Xiβ

σ
)

1− Φ(a−Xiβ
σ

)

= Xiβ + σ
ϕ(a−Xiβ

σ
)

1− Φ(a−Xiβ
σ

)
. (4.8)

The above equation clearly shows that the mean of the truncated distribution has sample
selection bias. In this case, the OLS estimator is a biased estimator, since

E[βOLS|yi > a] =

(
n∑

i=1

XiX
′
i

)−1 n∑
i=1

XiE[yi|yi > a]

=

(
n∑

i=1

XiX
′
i

)−1 n∑
i=1

Xi

[
Xiβ + σ

ϕ(a−Xiβ
σ

)

1− Φ(a−Xiβ
σ

)

]

= β + σ

(
n∑

i=1

XiX
′
i

)−1 n∑
i=1

Xi

ϕ(a−Xiβ
σ

)

1− Φ(a−Xiβ
σ

)
(4.9)

holds. Thus, we use the MLE for the estimation of β. We obtain the MLE by constructing
the likelihood function L(β, σ2) as follows:

L(β, σ2) =
n∏

i=1

f(yi −Xiβ)

1− F (a−Xiβ)
=

n∏
i=1

1

σ

ϕ(yi−Xiβ
σ

)

1− Φ(a−Xiβ
σ

)
(4.10)

and maximizing L(β, σ2) with respect to β and σ2.

Appendix

A Logistic Distribution: More Detail

Here we mention the more formal definition and features of the logistic distribution in more
detail. The argument below is based on [2].

A.1 Definition and Introduction

The distribution of the logistic distribution is mostly simply defined in terms of its cumulative
distribution function F (x):

F (x) :=
1

[1 + exp{−(x− α)/β}]
=

1

2

[
1 + tanh

{
1

2
(x− α)/β

}]
(A.1)
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with β > 0. It can be seen that Eq. (A.1) defines a proper cumulative distribution with

lim
x→−∞

F (x) = 0; lim
x→∞

F (x) = 1.

The corresponding probability density function is

f(x) = β−1 [exp{−(x− α)/β}]
[1 + exp{−(x− α)/β}]2

= (4β)−1sech2

{
1

2
(x− α)/β

}
.

Then, the distribution is sometimes called the sech–squared(d) distribution. Putting α ≡ 0
and β ≡ 1 yields

F (x) =
1

1 + exp(−x)
; f(x) =

exp(−x)

(1 + exp(−x))2
,

which is identical to Eq. (2.7) and (2.8), respectively.

A.2 Genesis

The use of the logistic function as a growth curve can be based on the following differential
equation:

dF

dx
= c[F (x)− A][B − F (x)], (A.2)

where c, A and B are constants with c > 0, B > A. The solution of Eq. (A.2) leads to

F (x) =
BD exp{x/c}+ A

D exp{x/c}+ 1
, (A.3)

where D is a constant. If D ̸= 0, as x → −∞,

lim
x→−∞

F (x) = lim
x→−∞

BD exp{x/c}+ A

D exp{x/c}+ 1
= A.

Also, as x → ∞, by using the L’Hôpital’s rule, we obtain

lim
x→∞

F (x) = lim
x→∞

BD exp{x/c}+ A

D exp{x/c}+ 1
= lim

x→−∞
B = B.

When A = 0, B = 1, Eq. (A.3) becomes

F (x) =
D exp{x/c}

1 +D exp{x/c}
=

1

1 +D−1 exp{−x/c}
,

which is of the form of Eq. (A.1) with c = β,D = exp{−α/β}.

A.3 Mean, Variance and Moment Generating Function

Here we show the form of the mean, variance and moment generating function for a random
variable that follows a logistic distribution (without proof). (If you want to see the proof,
see [2].)

The mean and variance of the logistic distributed random variable becomes:

E[X] = α; V[X] =
β2π2

3
. (A.4)

Then the moment generating function is given by

E[exp{θX}] = B(1− θ, 1 + θ) = πθcosecπθ. (A.5)
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B Derivation of Eq. (4.5)

Here we prove Eq. (4.5). Direct calcualtion yields

E[X2|X > a] =

∫ ∞

a

x2 f(x)

1− Φ(α)
dx

=

∫ ∞

a

x

{
σ2

(
x− µ

σ2

)
+ µ

}
f(x)

1− Φ(α)

=
1

1− Φ(α)

[
σ2

∫ ∞

a

x

(
x− µ

σ2

)
f(x)dx

]
+ µ

∫ ∞

a

x
f(x)

1− Φ(α)
dx

=
1

1− Φ(α)
σ2

∫ ∞

a

x
d

dx
{−f(x)}dx+ µE[X|X > a]

=
1

1− Φ(α)
σ2[−xf(x)]∞a +

1

1− Φ(α)
σ2

∫ ∞

a

d

dx
xf(x)dx︸ ︷︷ ︸

integration by parts

+µE[X|X > a]

=
σ2

1− Φ(α)
[−0 + af(a)] +

σ2

1− Φ(α)

∫ ∞

a

f(x)dx+ µE[X|X > a]

=
σ2

1− Φ(α)
af(a) +

σ2

1− Φ(α)
(1− Φ(α)) + µE[X|X > a]

=
σ2

1− Φ(α)
a
1

σ
ϕ(α) + σ2 + µ(µ+ σλ(α))

= σaλ(α) + σ2 + µ2 + µσλ(α). (B.1)

Thus, using Eq. (B.1), we have

V[X|X > a] = E[X2|X > a]− (E[X|X > a])2

= σaλ(α) + σ2 + µ2 + µσλ(α)− (µ+ σλ(α))2

= σ2

{
1− λ(α)2 +

a− µ

σ
λ(α)

}
= σ2

{
1− λ(α)

[
λ(α)− a− µ

σ

]}
= σ2 {1− λ(α) [λ(α)− α]} , (B.2)

which completes the proof.

References

[1] Greene, W. H., Econometric analysis Seventh Edition. 2012, Pearson.

[2] Johnson, N. L., Kotz, S. and Balakrishnan, N., Continuous univariate distributions.
1970, Houghton Mifflin Boston.

12


