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1 Preliminary

Today, we review the truncated regression model (Tobit model), the count data model

and examples of the estimation.
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4.1 Empirical Example–Logit/Probit Model

4.2 Empirical Example–Zero Inflated Poisson Count Data Model
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B Non-linear Optimization Procedure

2 Tobit Model

The following discussion is explained in Hayashi (2000). Suppose that yi and Xi

satisfy following linear regression model such that:

y∗i = X ′
iβ + ui, ui ∼ N(0, σ2), i = 1, 2, · · · , n (1)

where yi is i.i.d. dependent variable and X ′
i ∈ R1×k is explanatory variable. Consider

the following censoring:

yi =

{
y∗i if y∗i > c,

c if y∗i ≤ c.
(2)

That is, an equivalent way to write the model is

yi = max{X ′
iβ + ui, c}. (3)

This model is called the Tobit model to pay respect to Tobin (1958). Unlike in

truncated model, there is no truncation here. The feature that distinguishes the cenored

regression model from usual regression model is that the dependent variable is censored.

For the observations that satisfy y∗i > c, its density is given by

σ−1ϕ

(
yi −X ′

iβ

σ

)
. (4)

Because there is no truncation, this density differs from the density for the truncated

model in this case. For the observations which satisfy y∗i ≤ c, the probability is given

by

Prob(y∗i ≤ c|Xi) = Prob

(
y∗i −X ′

iβ

σ
≤ c−X ′

iβ

σ

∣∣∣Xi

)
(5)

= Φ

(
c−X ′

iβ

σ

)
, (6)
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since we have (y∗i −X ′
iβ)/σ |Xi ∼ N(0, 1). Therefore, the density of yi, defined over the

interval [c,+∞), is Eq. (4) for the case yi > c and a probability mass of size Φ(
c−X′

iβ
σ )

at yi = c. This density can be rewritten as[
σ−1ϕ

(
yi −X ′

iβ

σ

)]Ii
×
[
Φ

(
c−X ′

iβ

σ

)]1−Ii

.

Recall that Ii is an indicator function such that:

Ii =

{
1 if y∗i > c,

0 if y∗i ≤ c.

Taking the logarithms, we obtain the log–conditional likelihood for the observation

i = 1, 2, · · · , n as follows:

logL(β, σ2) = Ii log

[
σ−1ϕ

(
yi −X ′

iβ

σ

)]
+ (1− Ii) log

[
Φ

(
c−X ′

iβ

σ

)]
. (7)

3 Count Data Model

Like in the case of traffic accidents, we sometimes need to know how many times

the events occur. In this section, we assume that the observed events are counted as

yi = 0, 1, 2, . . ..

3.1 Poisson Count Data Model

Consider the following Poisson distribution:

P(X = x) = f(x) :=
e−λλx

x!
for x = 0, 1, 2, . . . .

The Poisson distribution is obtained as a limit of a binomial distribution (二項分

布) by n → ∞ and p → 0 with np = λ(∈ R++) fixed, where p stands for the success

probability of a trial. The expectation of this distribution is

E[X] =

∞∑
x=0

x
e−λλx

x!
=

∞∑
x=1

x
e−λλx

x!
=

∞∑
x=0

λ
e−λλx−1

(x− 1)!
= λ

∞∑
x=1

e−λλx−1

(x− 1)!︸ ︷︷ ︸
1

= λ,

Recall that
∑∞

i=0 e
−λλx/x! = 1 since this represents the total sum of probability. More-

over, the variance is

V[X] = E[X2]− E[X]2 = λ(λ+ 1)− λ2 = λ.

Note that the second moment of X is calculated as follows:

E[X2] =

∞∑
x=0

x2 e
−λλx

x!
= λ

∞∑
x=1

x
e−λλx−1

(x− 1)!
= λ

( ∞∑
x∗=0

(x∗ + 1)
e−λλx∗

x∗!

)
= λE[x∗ + 1] = λ(λ+ 1).
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3.1.1 Model

Let yi ∈ {0, 1, 2, · · · } (discrete numbers) and yi ∼ Poi(λ). Poisson count data model

is represented as

E[yi] = λi = exp(Xiβ)

where λi > 0. (Xiβ can be negative. So you should avoid the specification λi = Xiβ.)

To estimate β, we use the MLE method. The log–likelihood function is defined as

L(β) = f(y1, y2, · · · , yn) =
n∏

i=1

f(yi) =
n∏

i=1

e−λiλyi

i

yi!
,

where λi = exp(Xiβ). By taking natural logarithm, we obtain the following equation:

logL(β) = −
n∑

i=1

λi +

n∑
i=1

yi log λi −
n∑

i=1

log(yi!)

= −
n∑

i=1

exp(Xiβ) +

n∑
i=1

yiXiβ −
n∑

i=1

log(yi!)

Then, by differentiating with β, we obtain the F.O.C. as follows:

∂ logL(β)

∂β
= −

n∑
i=1

X ′
i exp(Xiβ) +

n∑
i=1

X ′
iyi = 0.

Here we use the Newton Raphson method or the Method of Scoring to obtain β.

We can apply the procedure as follows:

β(j+1) = β(j) −

(
−

n∑
i=1

X ′
iXi exp(Xiβ

(j))

)−1(
−

n∑
i=1

X ′
i exp(Xiβ

(j)) +

n∑
i=1

X ′
iyi

)
.

in the case of the Newton Raphson method, and

β(j+1) = β(j) − E

(− n∑
i=1

X ′
iXi exp(Xiβ

(j))

)−1
(− n∑

i=1

X ′
i exp(Xiβ

(j)) +

n∑
i=1

X ′
iyi

)
.

in the case of the method of Scoring.

3.2 Zero Inflated Poisson Count Data Model

In the case of too many zeros, we should modify the Poisson count data model since

the estimation does not become appropriate so often in such cases. So we assume that

the probability of yi = j is decomposed of two regimes as follows:

• Regime 1: yi = 0 w.p.1

Regime 1 is chosen with probability “F (Ziα)”.
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• Regime 2: yi ∼ Poi(λi)

Regime 2 is chosen with probability “1− F (Ziα)”.

Therefore, the probability of observing yi = j is

P(yi = 0) = P(yi = 0 | R1)P(R1) + P(yi = 0 | R2)P(R2), (8)

P(yi = j) = P(yi = j | R1)P(R1) + P(yi = j | R2)P(R2). (9)

In the above relationships, we assume

• P(yi = 0|R1) = 1 and P(yi = j|R1) = 0 for j = 1, 2, . . .;

• λi = exp(Xiβ);

• P(R1) = F (Ziα);

• P(R2) = 1− F (Ziα);

• P(yi = j|R2) =
e−λiλ

yi
i

yi!
.

Eq. (8) and Eq. (9) can be rewritten as

P(yi = j) = P(R1)Ii + P(yi = j | R2)P(R2), for j = 1, 2, . . . ,

where Ii is an indicator variable which is equal to Ii = 1 in the case of yi = 0 and Ii = 0

in other cases. So probability function can be rewritten as

P(yi = j) = F (Ziα)Ii +
e−λiλyi

i

yi!
(1− F (Ziα)), j = 0, 1, 2, . . . .

where the log–likelihood function is given by

logL(α, β) =
n∑

i=1

logP(yi = j) =
n∑

i=1

log

(
F (Ziα)Ii +

e−λiλyi

i

yi!
(1− F (Ziα))

)
.

Then we obtained the estimator of α and β by maximizing the log–likelihood function

with respect to α and β by means of the Newton-Raphson Method or the Method

of Scoring.

4 Empirical Examples

4.1 Empirical Example–Logit/Probit Model

At first, we estimate the Logit model and the Probit model. The R code and data set

are provided in the UCLA Institute for Digital Research and Education. *1 A researcher

is interested in variables which indicates achievement degree, such as GRE (Graduate

Record Exam scores), GPA (grade point average) and prestige of the undergraduate

institution, effect admission into graduate school. The response variable, admit/do not

admit is a binary variable. The model is represented as

admiti = GREiβ1 +GPAiβ2 + rankiβ3 + ui,

*1 https://stats.idre.ucla.edu/
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where a variable ”rank” represents the prestige of the university and takes on the values

1 through 4. The R code is given as follows.

#This example is provided in the UCLA Institute for Digital Research and

Education

#https :// stats.idre.ucla.edu/r/dae/logit -regression/

library(aod)

library(ggplot2)

mydata <- read.csv(" https :// stats.idre.ucla.edu/stat/data/binary.csv")

## view the first few rows of the data

head(mydata)

mydata$rank <- factor(mydata$rank)

#logit ################

mylogit <- glm(admit ~ gre + gpa + rank , data = mydata , family = "binomial

")

summary(mylogit)

#probit ###############

myprobit <- glm(admit ~ gre + gpa + rank , family = binomial(link = "probit

"),data = mydata)

summary(myprobit)

The result is explained as follows.

> library(aod)

Warning message:パッケージ‘’
aod はバージョン 3.4.4 の R の下で造られました

> library(ggplot2)

> mydata <- read.csv(" https :// stats.idre.ucla.edu/stat/data/binary.csv")

> ## view the first few rows of the data

> head(mydata)

admit gre gpa rank

1 0 380 3.61 3

2 1 660 3.67 3

3 1 800 4.00 1

4 1 640 3.19 4

5 0 520 2.93 4

6 1 760 3.00 2

> mydata$rank <- factor(mydata$rank)

> mylogit <- glm(admit ~ gre + gpa + rank , data = mydata , family = "

binomial ")

>

> summary(mylogit)

Call:

glm(formula = admit ~ gre + gpa + rank , family = "binomial",

data = mydata)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6268 -0.8662 -0.6388 1.1490 2.0790
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.989979 1.139951 -3.500 0.000465 ***

gre 0.002264 0.001094 2.070 0.038465 *

gpa 0.804038 0.331819 2.423 0.015388 *

rank2 -0.675443 0.316490 -2.134 0.032829 *

rank3 -1.340204 0.345306 -3.881 0.000104 ***

rank4 -1.551464 0.417832 -3.713 0.000205 ***

---

Signif. codes: 0 ‘’*** 0.001 ‘’** 0.01 ‘’* 0.05 ‘’. 0.1 ‘’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98 on 399 degrees of freedom

Residual deviance: 458.52 on 394 degrees of freedom

AIC: 470.52

Number of Fisher Scoring iterations: 4

###################################################################

Call:

glm(formula = admit ~ gre + gpa + rank , family = binomial(link = "probit ")

,

data = mydata)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6163 -0.8710 -0.6389 1.1560 2.1035

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.386836 0.673946 -3.542 0.000398 ***

gre 0.001376 0.000650 2.116 0.034329 *

gpa 0.477730 0.197197 2.423 0.015410 *

rank2 -0.415399 0.194977 -2.131 0.033130 *

rank3 -0.812138 0.208358 -3.898 9.71e-05 ***

rank4 -0.935899 0.245272 -3.816 0.000136 ***

---

Signif. codes: 0 ‘’*** 0.001 ‘’** 0.01 ‘’* 0.05 ‘’. 0.1 ‘’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98 on 399 degrees of freedom

Residual deviance: 458.41 on 394 degrees of freedom

AIC: 470.41

Number of Fisher Scoring iterations: 4
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4.2 Empirical Example–Zero Inflated Poisson Count Data Model

Next, we estimate the zero-inflated Poisson count data model provided in the IDRE

UCLA website.*2 This website explains a number of the examples introduced in the

Econometrics II classes.

• We have data on 250 groups that went to a (state) park.

• Each group was questioned about how many fish they caught (count), how many

children in the group (child), how many people were in the group (persons), and

whether or not they brought a camper to the park (camper).

• Some visitors do not fish (Regime 1), but there is no data on whether a person

fished or not.

• Some visitors who did fish (Regime 2) did not catch any fish so there are excess

zeros in the data.

The R code is given as follows.

library(ggplot)

library(pscl)

library(stargazer)

zinb <- read.csv("https :// stats.idre.ucla.edu/stat/data/fish.csv")

zinb <- within(zinb , {

nofish <- factor(nofish)

livebait <- factor(livebait)

camper <- factor(camper)

})

summary(zinb)

summary(m1 <- zeroinfl(count ~ child + camper | persons , data = zinb))

stargazer(m1)

The result is explained as follows.

Call:

## zeroinfl(formula = count ~ child + camper | persons , data = zinb)

##

## Pearson residuals:

## Min 1Q Median 3Q Max

## -1.2369 -0.7540 -0.6080 -0.1921 24.0847

##

## Count model coefficients (poisson with log link):

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.59789 0.08554 18.680 <2e-16 ***

## child -1.04284 0.09999 -10.430 <2e-16 ***

## camper1 0.83402 0.09363 8.908 <2e-16 ***

##

*2 Institute for the Digital Research & Education ”ZERO-INFLATED POISSON REGRESSION

— R DATA ANALYSIS EXAMPLES” (https://stats.idre.ucla.edu/r/dae/zip/)
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## Zero -inflation model coefficients (binomial with logit link):

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.2974 0.3739 3.470 0.000520 ***

## persons -0.5643 0.1630 -3.463 0.000534 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Number of iterations in BFGS optimization: 12

## Log -likelihood: -1032 on 5 Df
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Appendix

AppendixA Poisson Distribution

Consider that an event occurs with probability p = λ/n, and we consider the proba-

bility that the event happens x times over n trials as follows:

P (X = x) =
n!

(n− x)!x!
px(1− p)n−x =

n!

(n− x)!x!

(
λ

n

)x(
1−

λ

n

)n−x

,

where the distribution which X follows becomes a binomial distribution. Then, we can

transform the above equation as follows:

P (X = x) =

x times multiplied︷ ︸︸ ︷
n× (n− 1)× · · · × (n− x+ 1)

x!

λx

nx

(
1−

λ

n

)n(
1−

λ

n

)−x

(10)

=
n

n

(n− 1)

n

(n− 2)

n
· · ·

(n− x+ 1)

n

λx

x!

(
1−

λ

n

)n(
1−

λ

n

)−x

. (11)

By taking the limit of Eq. (11) with respect to n, with np = λ fixed (so that p → 0

accordingly), we obtain

lim
n→∞

P (X = x) = lim
n→∞

n

n︸︷︷︸
1

(n− 1)

n︸ ︷︷ ︸
1

· · ·
(n− x+ 1)

n︸ ︷︷ ︸
1

λx

x!

(
1−

λ

n

)n

︸ ︷︷ ︸
e−λ

(
1−

λ

n

)−x

︸ ︷︷ ︸
1

.

From the above equation, we have

P (X = x) =
λxe−λ

x!
.

AppendixB Non-linear Optimization Procedure

Note that the Newton-Raphson method (one of the non-linear optimization procedure)

is described as follows:

β(j+1) = β(j) −

(
∂2 logL(β(j))

∂β∂β′

)−1
∂ logL(β(j))

∂β

This equation comes from the first–order Taylor series expansion around β = β∗:

0 =
∂ logL(β)

∂β
≈

∂ logL(β∗)

∂β
+

∂2 logL(β∗)

∂β∂β′ (β − β∗)
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Then we obtain

∂2 logL(β∗)

∂β∂β′ (β − β∗) = −
∂ logL(β∗)

∂β

β − β∗ = −

(
∂2 logL(β∗)

∂β∂β′

)−1
∂ logL(β∗)

∂β

This yields the above equation. If we take the expectation on the second derivative of

the likelihood function, the method is known as the method of Scoring(スコア法).

11



References

[1] William, H., Greene (2012) ”Econometric analysis Seventh Edition”, Pearson.

[2] Fumio, Hayashi (2000) ”ECONOMETRICS”, Princeton University Press.

12


