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1 Cross Section Data and Panel Data

1.1 Cross Section Data

Cross section data is a one with individual specified structure at a fixed time point.
Therefore, both dependent and independent varialbles are dependent on the individual i ∈
{1, . . . , n} (if there are n ∈ N++ := {1, 2, . . .} observations).

1.2 Panel Data

Different from the cross section data, panel data is a one with time and individual specified
structure. This fact infers that both dependent and independent variables are dependent on
time t ∈ {1, . . . , T} as well as the individual i ∈ {1, . . . , n}.

2 Panel Data: Model

In this section, the structure of panel data is explained. The model for panel data is basically
given by

yit = Xitβ + νi + uit, i = 1, 2, . . . , n, t = 1, 2, . . . , T, (2.1)

where i indicates the individual and t denotes time. There are n ∈ {1, 2, . . .} observations
for each t ∈ {1, 2, . . . , T}. Then, uit indicates the error term. Here we have the following
assumption:

• E[uit] = 0 for all i ∈ {1, . . . , n};

• V[uit] = σ2
u for all i ∈ {1, . . . , n};

• Cov[uit, ujs] = 0 for all i ̸= j and t ̸= s.

νi represents the individual effect, which is fixed or random. The difference is shown in the
next definition.� �
Definition 2.1 (Fixed Effect Model and Random Effect Model). The difference of the
two model analysis is described as follows:

• a random effect analysis puts νi into the error term with νi and Xit (in addition
to uit) being orthogonal, which exploits the serial correlation in the composite error
νi + uit in a generalized least squares (GLS) framework;

• a fixed effect analysis allows νi to be arbitrary correlated with Xit (but not with
uit, i.e., E[uit|Xit] = 0 for all t ∈ {1, . . . , T} and i ∈ {1, . . . , n}), which is the whole
point of using panel data.� �

The analysis of panel data, regardless of fixed or random effect model, allows the model
builder to learn about economic processes while accounting for both heterogeneity across
individuals, firms, countries, and so on for dynamic effects that are not invisible in cross
section.
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2.1 Individual Effect

The individual effect νi := ziα for i ∈ {1, . . . , n}, as its name indicates, can vary across the
individual. zi may be observable (ex. race, sex) or unobservable (ex. skill, preference).� �
Remark 2.1 (Difference between Fixed Effect Model and Random Effect Model). If

• zi is correlated with Xit and νi := ziα is constant across i ∈ {1, . . . , n}, or E[ε|X] ̸=
0 where ε := (1T ⊗ In)ννν + u, then we use fixed effect model;

• zi is uncorrelated with Xit or E[ε|X] = 0, then we use ramdom effect model.� �
2.2 Biased Estimator for Panel Data

If the individual effects defined above are all zero, then we can estimate the coefficient β by
a usual ordinary least squares (OLS) method. However, if some (or all) individual effects are
not zero and correlates with the explanatory variables, the OLS estimator is biased since

E[βOLS|X] = E[(X ′X)
−1

X ′y|X]

= E[(X ′X)
−1

X ′ (X ′β + (1T ⊗ In)ννν + u) |X]

= β + E[(X ′X)
−1

X ′ ((1T ⊗ In)ννν + u) |X]

̸= β

where

y = Xβ + (1T ⊗ In)ννν + u (2.2)

represents the stacked form of Eq. (2.1) (with respect to both time and indivudual). This
reveals the necessity for alternative methods to estimate β, one of which is a fixed effect
analysis.

3 Least Squares Dummy Variable (LSDV) Model and

Within Model

When we estimate a fixed effect model, there exist two kinds of estimator: least squares
dummy variable (LSDV) estimator and Within estimator.

3.1 LSDV model

LSDV model stems from the following regression model:

yit = Xitβ +Diνi + uit (3.1)

where Di is a dummy variable for each individual. LSDV estimation is a normal OLS estima-
tion with dummy variables added and we can estimate the estimator with a simple method.
However, when the number of individuals counts so large, it takes time to calculate the
computer since the number of explanatory variables also increases.
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3.2 Within Model

In order to avoid this problem, Within model is an alternative method to estimate. We
obtain the Within estimator from the following equation:

ỹit = X̃itβ + uit (3.2)

where

ỹit := yit − yi; X̃it := Xit −X i, (3.3)

and yi and X i are the average with respect to time for each individual.� �
Remark 3.1 (Estimator of the Two Model). The estimator obtained in Within Model
coincides with the one in LSDV model.� �

4 The Fixed Effect Model

In this section, we first review and derive the estimator for fixed effect model. Then, the
properties of the estimator are stated with its derivation. The estimator for fixed effect model
is given as follows.� �
Theorem 4.1 (Estimator for Fixed Effect Model). The estimator for the fixed effect
model is given by

β̂FE = (X ′(In ⊗DT )X)
−1

X ′(In ⊗DT )y. (4.1)� �
The next subsection shows how to derive the above estimator.

4.1 Estimator: Derivation

Taking the average of the model:

yit = Xitβ + νi + uit

with respect to time t ∈ {1, 2, . . . , T} yields

yi = X iβ + νi + ui, i = 1, 2, . . . , n, (4.2)

where

yi =
1

T

T∑
t=1

yit; X i =
1

T

T∑
t=1

Xit; ui =
1

T

T∑
t=1

uit.

Therefore, by subtracting Eq. (4.2) from Eq. (2.1), we obtain

yit − yi = (Xit −X i)β + (uit − ui), i = 1, 2, . . . , n, t = 1, 2, . . . , T. (4.3)

By the operation above, the individual effect νi disappear, which is one of the key point of
the fixed effect model.
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Here we have the following representation for yi, X i and ui:

yit − yi = yit −
1

T
1′Tyi (4.4)

where

1T =


1
1
...
1

 ,

which means 1T ∈ RT×1 (a T × 1 vector), and

yi =


yi1
yi2
...
yiT

 ,

which also means yi ∈ RT×1 (a T × 1 vector). Then,
yi1 − yi
yi2 − yi

...
yiT − yi

 = ITyi − 1Tyi = ITyi −
1

T
1T1

′
Tyi = (IT − 1

T
1T1

′
T )yi (4.5)

holds. Thus, by defining

Xi :=


Xi1

Xi2
...

XiT


and applying the same rearrangement above, we have

(IT − 1

T
1T1

′
T )yi = (IT − 1

T
1T1

′
T )Xiβ + (IT − 1

T
1T1

′
T )ui, i = 1, 2, . . . , n. (4.6)

Define

DT := IT − 1

T
1T1

′
T , (4.7)

which is a T × T matrix. Then, the above equation is rewritten as

DTyi = DTXiβ +DTui, i = 1, 2, . . . , n. (4.8)

Note thatD′
TDT = DT , id est, DT is a symmetric and idempotent matrix. Using the following

notations:

y =


y1
y2
...
yn

 (∈ RTN×1); X =


X1

X2
...

Xn

 (∈ RTN×k); u =


u1

u2
...
un

 (∈ RTN×1),
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we obtain the following stacked model for fixed effect model:
DT 0 · · · 0
0 DT · · · 0
...

. . . . . . 0
0 · · · 0 DT

 y =


DT 0 · · · 0
0 DT · · · 0
...

. . . . . . 0
0 · · · 0 DT

Xβ +


DT 0 · · · 0
0 DT · · · 0
...

. . . . . . 0
0 · · · 0 DT

u.

Here we review some concepts related to the Kronecker product.� �
Review (Kronecker Product: Definition and Properties). Let the two matrix A and B
be n×m and T × k, respectively. Then the Kronecker product is defined as

A⊗B :=


a11B a12B · · · a1mB
a21B a22B · · · a2mB
...

. . . . . .
...

an1B an2B · · · anmB

 ∈ RnT×mk.

The Kronecker Product has, by its definition, some important properties. (In the follow-
ing, assume A ∈ Rn×n and B ∈ Rm×m).

(i) (A⊗B)−1 = A−1 ⊗B−1;

(ii) |A⊗B| = |A|m|B|n:

(iii) (A⊗B)′ = A′ ⊗B′;

(iv) Tr(A⊗B) = Tr(A)Tr(B).

Moreover, for A,B,C and D such that the products (of the following equations) are
defined, then

(A⊗B)(C ⊗D) = AC ⊗BD.� �
Using the Kronecker product, we obtain the following expression:

(In ⊗DT )︸ ︷︷ ︸
∈RTn×Tn

y︸︷︷︸
∈RTn×1

= (In ⊗DT )︸ ︷︷ ︸
∈RTn×Tn

X︸︷︷︸
∈RTn×k

β︸︷︷︸
∈Rk×1

+(In ⊗DT )︸ ︷︷ ︸
∈RTn×Tn

u︸︷︷︸
∈RTn×1

. (4.9)

Note that the inverse matrix of DT is not available, as the rank of DT is T − 1, not T (full
rank). Thus, applying the OLS method to the above regression model, we obtain

β̂FE = (((In ⊗DT )X)′(In ⊗DT )X)
−1

((In ⊗DT )X)′(In ⊗DT )y

= (X ′(In ⊗D′
TDT )X)

−1
X ′(In ⊗D′

TDT )y

= (X ′(In ⊗DT )X)
−1

X ′(In ⊗DT )y, (4.10)

which yields Eq. (4.1).

4.2 Estimator: Properties

Here we show some properties of β̂FE. (For more detail, see [2])
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� �
Theorem 4.2 (Properties of the Estimator for the Fixed Effect Model). Under the
assumptions we set above and some additional appropriate assumptions, the estimator
β̂FE obtained above has the following properties.

(i) Unbiasedness estimator β̂FE becomes an unbiased estimator:

E[β̂FE] = β. (4.11)

(ii) Consistency the estimator β̂FE = (X ′(In ⊗DT )X)−1X ′(In ⊗DT )y satisfies

β̂FE
p−→ β or plim

n→∞
β̂FE = β. (4.12)

� �
Proof. As for the unbiasedness, we can prove Eq. (4.11) directly as follows.

(i) Unbiasedness In the following, define

y := (In ⊗DT )y; X := (In ⊗DT )X; u := (In ⊗DT )u. (4.13)

Then, Eq. (4.9) is rewritten as

y = Xβ + u,

and accordingly the obtained estimator:

β̂FE = (X′X)
−1

Xy

= β + (X′X)
−1

Xu. (4.14)

Thus, under the assumption that E[u|X] = 0,

E[β̂FE|X] = E[β + (X′X)
−1

Xu|X]

= β + (X′X)
−1

XE[u|X]︸ ︷︷ ︸
=0

= β,

which yields

E[β̂FE] = E[E[β̂FE|X]] = β. (4.15)

Note that if E[u|X] = 0, then E[u] = 0, which meets the requirements mentioned
above.

(ii) Consistency From Eq. (4.14), we have

β̂FE = β +

(
1

Tn

Tn∑
i=1

X′
iXi

)−1(
1

Tn

Tn∑
i=1

X′
iui

)
.

where

X :=

 X1
...

XTn

 ; u :=

 u1
...

uTn

 , (4.16)
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and Xi ∈ R1×k for all i ∈ {1, . . . , Tn}. By taking the probability limit on both sides,
we have

plim
Tn→∞

βOLS = β + plim
Tn→∞

(
1

n

Tn∑
i=1

X′
iXi

)−1

plim
Tn→∞

(
1

Tn

Tn∑
i=1

X′
iui

)
. (4.17)

Here we apply the convergence of the product of random variables in probabil-
ity. If we assume E [X′

iXi] < ∞ for all i ∈ {1, . . . , Tn}, from the weak law of large
numbers (WLLN),

1

Tn

Tn∑
i=1

X′
iXi

p−→ E [X′
iXi] < ∞; (4.18)

1

Tn

Tn∑
i=1

X′
iui

p−→ E [X′
iui] = 0(∈ Rk). (4.19)

Eq. (4.19) holds from the orthogonal condition with respect toX and u: E[u|X] = 0.
In addition,

plim
Tn→∞

(
1

Tn

Tn∑
i=1

X′
iXi

)−1

= E [X′
iXi]

−1
(4.20)

holds from the continuous mapping theorem. Thus, substituting Eq. (4.18) and
Eq. (4.19) into Eq. (4.17) results in

plim
Tn→∞

β̂FE = β + E [X′
iXi]

−1
0 = β,

which indicates that β̂FE
p−→ β.

� �
Remark 4.1 (Efficiency). As for the efficiency, the OLS estimator β̂FE is NOT eficient
unless E[X ′ ((IT ⊗ 1n)ννν + u)] = 0 since

V[βGLS] ≤ V[βOLS] (4.21)

always holds (in the fixed effect model).� �
4.3 Individual Effect of LSDV Model

In the LSDV model, we can recover the individual effect as follows:

ν̂i = yi −X iβ̂FE

⇐⇒ ν̂i = Ziα + ϵi,

where it is assumed that the individual–specific effect depends on Zi. The estimator of σ2
u is

given by

σ̂2
u =

1

Tn− k − n

n∑
i=1

T∑
t=1

(yit −Xitβ̂ − ν̂i)
2. (4.22)
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Appendix

A Properties of DT

Here we see and prove some properties of DT ∈ RT×T .

Properity (1) D′
T = DT (symmetric matrix).

Proof. Direct culculations yield

D′
T = (IT − 1

T
1T1

′
T )

′ = IT − 1

T
(1T1

′
T )

′ = IT − 1

T
1T1

′
T = DT .

Properity (2) DTDT = DT (idempotent matirx).

Proof. Direct culculations yield

DTDT = (IT − 1

T
1T1

′
T )(IT − 1

T
1T1

′
T )

= IT − 1

T
1T1

′
T − 1

T
1T1

′
T +

1

T 2
1T 1′T1T︸ ︷︷ ︸

=T

1′T

= IT − 1

T
1T1

′
T − 1

T
1T1

′
T +

1

T
1T1

′
T

= IT − 1

T
1T1

′
T

= DT .

Properity (3) Rank of DT is T − 1, not T .

Proof. To show the result, we use the following theorem.� �
Theorem A.1 (Symmetric and Idempotent Matrix). Assume that A ∈ Rn×n is
symmetric and idempotent. Then Rank(A) = Tr(A).� �

You can show this theorem by using the following facts:

(i) The eigenvalues of an idempotent matrix are zeros or ones;

(ii) Any symmetric matrix has a spectral decomposition with an orthogonal matrix
(which consists of eigen vectors of A).
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Since DT is a symmetric and idempotent matrix,

Rank(DT ) = Tr(DT )

= Tr(IT − 1

T
1T1

′
T )

= Tr


1 0 · · · 0
0 1 · · · 0
...

. . . . . .
...

0 0 · · · 1


︸ ︷︷ ︸

∈RT×T

− 1

T
Tr


1 1 · · · 1
1 1 · · · 1
...

. . . . . .
...

1 1 · · · 1


︸ ︷︷ ︸

∈RT×T

= T − 1

T
T

= T − 1 < T.

Therefore, Rank of DT is T − 1, not T .
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