
Econometrics II TA Session #7∗

Makoto SHIMOSHIMIZU†

December 3, 2019

Contents

1 Lebesgue Stieltjes Expression 2

2 Markov’s Inequality and Chebyshev’s Inequality 2

3 Law of Large Numbers 3
3.1 Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Weak Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Method of Moments (MM) 5
4.1 Estimator: Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Estimator: Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A Riemann Integral 8

B Stieltjes Integral 9

∗All comments welcome!
†E-mail: vgm067sm@student.econ.osaka-u.ac.jp

1



1 Lebesgue Stieltjes Expression

From the definition of the expectation of a random variable, we can symbolically write the
expectation based on the Lebesgue Stieltjes integral as

E[X] =

∫ ∞

−∞
xdF (x) :=


∑
i

xiP[X = xi] in the case of a discrete random variable;∫ ∞

−∞
xf(x)dx in the case of a continuous random variable.

The mapping P : Ω → R stands for the probability that the realized value of X becomes xi on
a probability space (Ω,F ,P). Also, f(x) represents the probability density function defined
as the derivative of the cummurative density function F (x) : R → R:

dF (x)

dx
= f(x),

provided that the derivative exists.

2 Markov’s Inequality and Chebyshev’s Inequality

In this section, we review two useful theorems providing upper bounds on some probability.
First, we provide the Markov’s inequality.� �
Theorem 2.1 (Markov’s Inequality). If X is a nonnegative random variable and δ is a
positive constant, then

P[X ≥ δ] ≤ E[X]

δ
. (2.1)

Moreover, If ϕ : R → R is a monotonically increasing nonnegative function for the non-
negative reals, X : Ω → R is a random variable, δ ≥ 0, and ϕ(δ) > 0, then

P[|X| ≥ δ] = P[ϕ(|X|) ≥ ϕ(δ)] ≤ E[ϕ(|X|)]
ϕ(δ)

. (2.2)

� �
Proof. We prove Eq. (2.1). Since the random variable X is a nonnegative random variable,

E[X] =

∫ ∞

−∞
xdF (x) =

∫ ∞

0

xdF (x).

From this we can derive

E[X] =

∫ ∞

0

xdF (x) =

∫ δ

0

xdF (x) +

∫ ∞

δ

xdF (x)

≥
∫ ∞

δ

xdF (x) ≥
∫ ∞

δ

δdF (x) = δ

∫ ∞

δ

dF (x) = δP[X ≥ δ].

From this it is easy to see that Eq. (2.1) holds. A similar calculation yields the extended (or
general) form of the Markov’s inequality or Eq. (2.2).
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The Markov’s inequality gives an upper bound for the probability that a non–negative
function of a random variable is greater than or equal to some positive constant. Next, we
present the Chebyshev’s inequality.� �
Theorem 2.2 (Chebyshev’s Inequality). Let X be a (integrable) random variable with
finite expected value µ and finite non-zero variance σ2. Then for any real number ε > 0,

P[|X − µ| ≥ ε] ≤ E[|X − µ|2]
ε2

=
V [X]

ε2
=

σ2

ε2
.� �

Proof. We can prove the above theorem via a direct method. Using the indicator function:

IA =

{
1 if the event A occurs;

0 otherwise,

we have

P[|X − µ| ≥ ε] = E[I|X−µ|≥ε]

=

∫ ∞

−∞
I|x−µ|≥εdF (x)

=

∫ ∞

−∞
I|x−µ

ε |≥1dF (x)

≤
∫ ∞

−∞

∣∣∣∣x− µ

ε

∣∣∣∣ I|X−µ
ε

|≥1dF (x)

≤
∫ ∞

−∞

∣∣∣∣x− µ

ε

∣∣∣∣2 I|X−µ
ε

|≥1dF (x)

≤
∫ ∞

−∞

∣∣∣∣x− µ

ε

∣∣∣∣2 dF (x)

=
1

ε2

∫ ∞

−∞
|x− µ|2 dF (x)

=
E[|X − µ|2]

ε2
.

Rewriting this yields the Chebyshev’s inequality.

Chebyshev’s inequality guarantees that, for a wide class of probability distributions, no
more than a certain fraction of values can be more than a certain distance from the mean.

3 Law of Large Numbers

In this section, we will discuss an important result, the so-called law of large numbers (LLN),
which has an important role in probability and statistics. The law of large numbers (LLN)
states that the average of a large number of i.i.d. random variables converge to the expected
value. There are two main versions of the law of large numbers, which are called the Weak
and Strong Laws of Large Numbers. The difference between them is mostly theoretical.
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3.1 Strong Law of Large Numbers

The Strong Law of Large Numbers (SLLN) states that the average of a large number
of i.i.d. random variables converge almost surely to the expected value.� �
Theorem 3.1 (Strong Law of Large Numbers). Let (Xn)n≥1 be a sequence of independent
and identically distributed (i.i.d.) random variables with E

[
|X1|4

]
< ∞ and E [X1] = µ.

Then,

Xn
a.s.−−→ µ,

where Xn ≡ 1

n

n∑
i=1

Xi is the sample mean.

� �
The proof of this theorem is a little difficult.

3.2 Weak Law of Large Numbers

The Weak Law of Large Numbers (WLLN) states that the average of a large number
of i.i.d. random variables converge in probability to the expected value.� �
Theorem 3.2 (Weak Law of Large Numbers). Let (Xn)n≥1 be a sequence of independent
and identically distributed (i.i.d.) random variables with E

[
|X1|2

]
< ∞. Then,

Xn
p−→ µ,

where Xn ≡ 1

n

n∑
i=1

Xi is the sample mean..

� �
Proof. We show that for all ε > 0, the following equality holds:

lim
n→∞

P ({|Xn − µ| > ε}) = 0,

From the assumption, we have

E
[
Xn

]
= E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] =
1

n
nµ = µ;

V
[
Xn

]
= V

[
1

n

n∑
i=1

Xi

]
=

1

n2
V

[
n∑

i=1

Xi

]
=

1

n2

n∑
i=1

V [Xi] =
1

n2

n∑
i=1

σ2 =
1

n2
nσ2 =

1

n
σ2.

Substituting these into the Chebyshev’s inequality yields

P
(∣∣Xn − E

[
Xn

]∣∣ ≥ ε
)
≤ V [X]

ε2
⇐⇒ P

(∣∣Xn − µ
∣∣ ≥ ε

)
≤ σ2

nε2
.

Therefore, taking a limit with respect to n results in

lim
n→∞

P ({|Xn − µ| > ε}) = 0,

which implies that Xn
p−→ µ.
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4 Method of Moments (MM)

In this section, we first review and derive the estimator obtained from method of moments
(MM). Then, the properties of the estimator are stated with its derivation. For deriving the
MM estimator for the following regression model:

yi = xiβ + ui,

where for i ∈ {1, . . . , n},

xi = (xi1, xi2, . . . , xik) ∈ R1×k; β = (β1, β2, . . . , βk)
′ ∈ Rk×1; yi ∈ R; ui ∈ R,

we usually assume the following condition called orthogonality condition.� �
Assumption 4.1. We assume

E[Xu] = 0, (4.1)

where

X =


x1

x2
...
xn

 ∈ Rn×k; u =


u1

u2
...
uk

 ∈ Rk×1. (4.2)

� �
Then the estimator for fixed effect model is given as follows.� �
Theorem 4.1 (Method of Moments Estimator). The estimator of MM is given by

β̂MM =

(
n∑

i=1

x′
ixi

)−1( n∑
i=1

x′
iyi

)
= (X ′X)

−1
X ′y. (4.3)

� �
The next subsection shows how to derive the above estimator.

4.1 Estimator: Derivation

From the Law of Large Numbers (LLN), we have

1

n

n∑
i=1

x′
iui =

1

n

n∑
i=1

x′
i(yi − xiβ)

p−→ E[xiui] = 0.

Thus, the MM estimator of β, deonoted by β̂MM , satisfies

1

n

n∑
i=1

x′
i(yi − xiβ) = 0.

Therefore, βMM is given by Eq. (4.3).
Note that β̂MM is equivalent to OLSE and MLE, which means that β̂MM has the same

properties of OLSE and MLE under some additional assumptions.
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4.2 Estimator: Properties

Here we show some properties of β̂MM .� �
Theorem 4.2 (Properties of the MM Estimator). Under the assumptions we set above
and some additional appropriate assumptions, the estimator β̂MM obtained above has
the following properties.

(i) Unbiasedness β̂MM becomes an unbiased estimator:

E[β̂MM ] = β. (4.4)

(ii) Consistency β̂MM = (X ′X)−1X ′y satisfies

β̂MM
p−→ β or plim

n→∞
β̂MM = β. (4.5)

(iii) Efficiency The variance of the MM estimator is the minimum one in the class of
linear unbiased estimator.� �

Proof. We can prove the above properties directly as follows.

(i) Unbiasedness From the fact:

β̂MM = (X ′X)
−1

X ′y = β + (X ′X)
−1

X ′u, (4.6)

under the assumption that E[u|X] = 0,

E[β̂MM |X] = E[β + (X ′X)
−1

Xu|X]

= β + (X ′X)
−1

X E[u|X]︸ ︷︷ ︸
=0

= β,

which yields

E[β̂MM ] = E[E[β̂MM |X]] = β. (4.7)

(ii) Consistency From Eq. (4.6), we have

β̂MM = β +

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
iui

)
.

where

X :=

x1
...
xn

 ∈ Rn×k; u :=

u1
...
un

 ∈ Rk×1, (4.8)

and xi ∈ R1×k for all i ∈ {1, . . . Tn}. By taking the probability limit on both sides, we
have

plim
n→∞

βMM = β + plim
n→∞

(
1

n

n∑
i=1

x′
ixi

)−1

plim
n→∞

(
1

n

n∑
i=1

x′
iui

)
. (4.9)
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Here we apply the convergence of the product of random variables in proba-
bility. If we assume E [x′

ixi] < ∞ for all i ∈ {1, . . . , n}, from the weak law of large
numbers (WLLN),

1

n

n∑
i=1

x′
ixi

p−→ E [x′
ixi] < ∞; (4.10)

1

n

n∑
i=1

x′
iui

p−→ E [x′
iui] = 0(∈ Rk×1). (4.11)

Eq. (4.11) holds from the orthogonal condition with respect toX and u: E[u|X] = 0.
In addition,

plim
n→∞

(
1

n

n∑
i=1

x′
ixi

)−1

= E [x′
ixi]

−1
(4.12)

holds from the continuous mapping theorem. Thus, substituting Eq. (4.10) and
Eq. (4.11) into Eq. (4.9) results in

plim
n→∞

β̂MM = β + E [x′
ixi]

−1
0 = β,

which indicates that β̂MM
p−→ β.

(iii) Efficiency As for the efficiency of the MM (or OLS) estimator, the Gauss–Markov
theorem for a multiple regression model supports the efficiency.
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Appendix

A Riemann Integral

Cauchy, A. (1821) firstly introduced the notion of “continuity of a function.” He subsequently
defines the definite integral in several years later (1823) as follows.� �
Definition A.1 (Riemann Integral). Consider the following summation of a continuous
function f defined over I := [a, b] ⊂ R:

n∑
j=1

f(xj−1)(xj − xj−1),

Then, taking the limit with respect to the maxnj=1(xj−xj−1), the above equation converges

to a value, which is defined by
∫ b

a
f(x)dx.� �

Here we give you the (more detailed) definition of the upper and lower Riemann integral.� �
Definition A.2 (Upper and Lower Riemann Integral). Let [a, b] ⊂ R be a given interval.
By a partition P of [a, b], we mean a finite set of points x0, x1, . . . , xn, where

a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b.

Remind that we write

∆xi := xi − xi−1.

Now suppose that f is a bounded real function defined on [a, b]. Let us denote the set of
all partitions by Π. Corresponding ot each partition P of [a, b] we put

Mi := sup f(x) (xi−1 ≤ x ≤ xi),

mi := inf f(x) (xi−1 ≤ x ≤ xi),

U(P, f) :=
n∑

i=1

Mi∆xi;

L(P, f) :=
n∑

i=1

mi∆xi,

and finally ∫ b

a

fdx := inf
P∈Π

U(P, f), (A.1)∫ b

a

fdx := sup
P∈Π

L(P, f), (A.2)

where the inf and sup are again taken over all partitions P of [a, b]. The left members of
Eq. (B.1) and (B.2) called the upper and lower Riemann integral of f over [a, b],
respectively.� �
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If the upper and lower integrals are equal, i.e.,∫ b

a

fdx := inf
P∈Π

U(P, f) =

∫ b

a

fdx := sup
P∈Π

L(P, f),

then we say that f is Riemann integrable on [a, b] and denote the common value of Eq.
(B.1) and (B.2) by ∫ b

a

fdx, (A.3)

or ∫ b

a

f(x)dx. (A.4)

This is the Riemann integral of f over [a, b].

B Stieltjes Integral

A more general version of the (upper and lower) Riemann integral is stated as Stieltjes
Integral described below.� �
Definition B.1 (Stieltjes Integral). Let α be a monotonically increasing function on
[a, b] ∈ R (since α(a) and α(b) are finite, it follows that α is bounded on [a, b].). Corre-
sponding to each partition P of [a, b], we write

∆αi := α(xi)− α(xi−1).

It is clear that ∆αi ≥ 0. For any real function f which is bounded on [a, b], we put

Mi := sup f(x) (xi−1 ≤ x ≤ xi),

mi := inf f(x) (xi−1 ≤ x ≤ xi),

U(P, f) :=
n∑

i=1

Mi∆αi;

L(P, f) :=
n∑

i=1

mi∆αi,

and we define ∫ b

a

fdx := inf
P∈Π

U(P, f), (B.1)∫ b

a

fdx := sup
P∈Π

L(P, f), (B.2)

where the inf and sup are taken over all partitions P of [a, b].� �
If the upper and lower integrals are equal, i.e.,∫ b

a

fdx := inf
P∈Π

U(P, f) =

∫ b

a

fdx := sup
P∈Π

L(P, f),
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then we denote their common value of Eq. (B.1) and (B.2) by∫ b

a

fdα, (B.3)

or somtimes by ∫ b

a

f(x)dα(x). (B.4)

This is the (Riemann–) Stieltjes integral of f with respect to α over [a, b].
If Eq. (B.3) exists, i.e., if Eq. (B.1) and (B.2) are equal, we say that f is integrable with

respect to α in the Riemann sense.
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