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1 Preliminary

In this class, we review how to derive a GMM estimator in general cases. GMM

method is widely used in the fields of panel data and finance, so we introduce how to

use GMM in the dynamic panel data analysis.

2.1-2.2 How to derive the GMM estimator in the general case

2.3 How to decide a weight matrix?

2.4 Asymptotic distribution of GMM estimator

3.1 Testing hypothesis

4.1 Empirical example

5.1 Notification
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2 GMM: non-linear case

2.1 Model Setting

In this section, we review how to derive a GMM estimator of the general case. For

instance, suppose the regression model as follows:

f(yi, xi, β) = ϵi, (1)

where yi and xi represents the observed data and ϵi indicates the disturbance term.

Here, the exogeneous variable vector is given as zi ∈ Rr×1 and the orthogonality con-

dition is E(z′iϵi) = 0. The regressor is β ∈ Rk×1. If the order condition (r ≥ k) is

satisfied, we can apply GMM.

2.2 GMM Estimator

Consider the case that we estimate Eq. (1) and assume that we represent h(θ : wi) :=

z′if(yi, xi, β). Note that θ is a parameter vector. This vector corresponds to β in Eq.

(1) and wi = (yi, xi) is the i th observed data. Then, the orthogonality condition is

E[h(θ : wi)] = 0,

As in the case of linear models, we can derive GMM estimator by solving the following

minimization problem:

min
θ

q ≡ ḡ′nS
−1ḡn,

where ḡn(θ : W ) := 1
n

∑n
i=1 h(θ : wi) and S is a positive definite (and symmetric)

matrix. The estimator is obtained from the following first order condition:

∂q

∂θ
= 2

∂ḡ′n(θ : W )

∂θ
S−1ḡn = 0.

To obtain θ̂, we linearize the first-order condition around θ = θ̂,

0 =
∂ḡ′n(θ : W )

∂θ
S−1ḡn(θ : W )

≈ ∂ḡ′n(θ̂ : W )

∂θ
S−1

(
ḡn(θ̂ : W ) +

∂ḡn(θ̂ : W )

∂θ′
(θ − θ̂)

)
.

(Note that the second derivative is omitted.) Let D̂ is the first derivative of ḡn(θ̂ : W )

with respect to θ′, then we have

D̂′S−1ḡn(θ : W ) + D̂′S−1D̂(θ − θ̂) = 0. (2)

Rewriting Eq. (2), we can estimate the regressor by the iterative procedure for i =

1, 2, 3, . . . :

θ̂i+1 = θ̂i − (D̂iS
−1D̂′

i)
−1D̂iS

−1ḡn(θ̂
i : W ),
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where

D̂i ≡
∂ḡn(θ̂

i : W )

∂θ′
.

2.3 How to estimate Ŝ?

Suppose that h(θ : wi) has a stationarity and Γτ := E(h(θ : wi)h(θ : wi−τ )
′) < ∞.� �

Assumption 2.1 (Stationarity) If h(θ : wi) has a stationarity, we have

1. E(h(θ : wi)) doen not depend on i.

2. E(h(θ : wi)h(θ : wi−τ )
′) depends on the time difference γ.� �

In this case, S is the variance of
√
nḡn(θ : W ):

S = Var[
√
nḡn(θ : W )] =

1

n
Var

[
n∑

i=1

h(θ : wi)

]

=
1

n
E

[
n∑

i=1

h(θ : wi)
n∑

i=1

h(θ : wi)
′

]

=
1

n
{nΓ0 + (n− 1)(Γ1 + Γ′

1) + (n− 2)(Γ2 + Γ′
2) · · ·+ (Γn−1 + Γn−1)}

= Γ0 +
n−1∑
i=1

(
1− i

n

)
(Γi + Γ′

i),

where Γ′
τ = E[h(θ : wi)h(θ : wi−τ )

′] = Γ−τ . The estimator of S is

Ŝ = Γ̂0 +

q−1∑
i=1

(
1− i

q + 1

)
(Γ̂i + Γ̂′

i).

This is the Newey-West estimator. Remind that n is replaced by q+1, and therefore

q ≤ n. We need to estimate Γ̂τ as

Γ̂τ =
1

n

n∑
i=τ+1

h(θ̂ : wi)h(θ̂ : wi−τ )
′.

Note that Ŝ → S, because Γ̂τ → Γτ as n → +∞.
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2.4 Asymptotic Distribution of GMM Estimator

In this subsection, we assume that the GMM estimator has the following properties.
*1� �

Assumption 2.2 (Assumptions for the Asymptotic Normality of the GMM Esti-

mator)

1. θ̂ → θ

2.
√
nḡn(θ : W ) → N(0, S), S = lim

n→∞
V [

√
nḡn(θ : W )].� �

Then, the GMM estimator has the asymptotic normality stated as follows.� �
Theorem 2.3 (Asymptotic Normality of the GMM Estimator) θ̂GMM satisfies

√
n(θ̂ − θ)

d−→ N(0, (DS−1D)−1)

where D is the first derivative of ḡn(θ : W ) with respect to θ′.� �
Proof. The approximation through the linearization of ḡn(θ̂ : W ) around θ̂ = θ yields

ḡn(θ̂) = ḡn(θ : W ) +
∂ḡn(θ̄ : W )

∂θ′
(θ̂ − θ), (3)

where θ̄ ∈ (θ̂, θ). Substituting Eq. (3) into Eq. (2) at θ̂ = θ, we have

0 = D̂′Ŝ−1(ḡn(θ : W ) + D̄(θ̂ − θ)),

where

D̄ :=
∂ḡn(θ̄ : W )

∂θ′
∈ Rr×k.

By using (Assumption 1.2), the asymptotic distribution is

√
n(θ̂ − θ) = (D̂′Ŝ−1D̄)−1D̂′Ŝ−1 ·

√
nḡn(θ : W )

d−→ N(0, (DS−1D)−1)

where D̂ → D, D̄ → D, Ŝ → S since θ̂ → θ, θ̄ → θ.

*1 GMM estimator has the consisitency under some general conditions. The formal statement is
explained in Chapter 14 of Wooldridge (2010).
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3 Testing Hypothesis

In this section, we consider the following hypothesis:

• H0 : R(θ) = 0 ∈ Rp×1;

• H1 : R(θ) ̸= 0.

Note that p ≥ k is the number of restrictions. By the delta method, R(θ̂) is linearlized

as

R(θ̂) = R(θ) +Rθ̄(θ̂ − θ),

where

Rθ̄ :=
∂R(θ̄)

∂θ′
∈ Rp×k.

Remind that θ̄ is between θ and θ̂ GMM . Under the null hypothesis, we have R(θ̂) =

Rθ̄(θ̂) − R(θ)), which implies that the distribution of R(θ̂) is equivalent to that of

Rθ̄(θ̂ − θ). The asymptotic distribution of
√
n(R(θ̂)−R(θ)) is

√
n(R(θ̂)−R(θ)) =

√
nRθ̄(θ̂ − θ)

→ N(0, Rθ(D
′S−1D)−1R′

θ),

since Rθ̄ → Rθ as θ̂ → θ. Thus, we have the following distribution:

nR(θ̂)
(
Rθ(D

′S−1D)−1
)
R′(θ̂) → χ2(p).

Practically, replacing θ by θ̂, we can derive the test statistic under H0 : R(θ) = 0,

n · (R(θ̂GMM))(Rθ̂(D̂
′Ŝ−1D̂)−1)(R′(θ̂)) → χ2(p).

This is a kind of Wald type tests.
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4 Empirical Example

Today, we estimate the dynamic panel data model by using the plm package. We can

estimate the dynamic panel data model by using GMM. In this class, we use EmplUK

data, which is related to the number of workers in 140 firms of the United Kingdom in

1976-1984.*2 The model which we estimate is

∆log(empit) = αi+β1 log(empit−1) + β2 log(empit−2) + γ1 log(wageit) + γ2 log(wageit−1)

+ δ1 log(capitalit−1) + θ1 log(outputit) + θ2 log(outputit−1) + ∆λt +∆ϵit.

The variables contained in the above equation are

• empit: the number of workers,

• wageit: the real wage,

• capitalit: the total capital,

• outputit: the quantity of output,

where i = 1, · · · , 140 and t = 4, · · · , 9. R code and the result are given as follows.

rm(list=ls(all=TRUE))

library(plm)

data(" EmplUK", package = "plm")

## Arellano and Bond (1991) , table 4 col. b

z1 <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1)

+ log(capital) + lag(log(output), 0:1) | lag(log(emp), 2:99) ,

data = EmplUK , effect = "twoways", model = "twosteps ")

summary(z1, robust = TRUE)

## results

Twoways effects Two steps model

Call:

pgmm(formula = log(emp) ~ lag(log(emp), 1:2) + lag(log(wage),

0:1) + log(capital) + lag(log(output), 0:1) | lag(log(emp),

2:99) , data = EmplUK , effect = "twoways", model = "twosteps ")

Unbalanced Panel: n = 140, T = 7-9, N = 1031

Number of Observations Used: 611

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.6190677 -0.0255683 0.0000000 -0.0001339 0.0332013 0.6410272

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

lag(log(emp), 1:2)1 0.474151 0.185398 2.5575 0.0105437 *

*2 This data set is provided in plm package. The detail of estimation is explained in Arellano and
Bond(1991).
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lag(log(emp), 1:2)2 -0.052967 0.051749 -1.0235 0.3060506

lag(log(wage), 0:1)0 -0.513205 0.145565 -3.5256 0.0004225 ***

lag(log(wage), 0:1)1 0.224640 0.141950 1.5825 0.1135279

log(capital) 0.292723 0.062627 4.6741 2.953e-06 ***

lag(log(output), 0:1)0 0.609775 0.156263 3.9022 9.530e-05 ***

lag(log(output), 0:1)1 -0.446373 0.217302 -2.0542 0.0399605 *

---

Signif. codes: 0 ‘’*** 0.001 ‘’** 0.01 ‘’* 0.05 ‘’. 0.1 ‘’ 1

Sargan test: chisq (25) = 30.11247 (p-value = 0.22011)

Autocorrelation test (1): normal = -1.53845 (p-value = 0.12394)

Autocorrelation test (2): normal = -0.2796829 (p-value = 0.77972)

Wald test for coefficients: chisq (7) = 142.0353 (p-value = < 2.22e-16)

Wald test for time dummies: chisq (6) = 16.97046 (p-value = 0.0093924)

>

5 Notification

The solution to the question (10) of the assignment #01 must be modified. The

following second derivative is true:

∂2l(β, σ2)

∂β∂σ2
=

n∑
i=1

(
− 1

σ4
(yi −Xiβ)−

Xiβ

2σ4

ϕ′
i

Φi
+

1

2σ3

ϕi

Φi
− Xiβ

2σ4

ϕ2
i

Φ2
i

)
X ′

i.
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