Homework (Due: January 23, 2020, AM10:20)

1 We want to estimate the following regression model:

$$y_i = X_i \beta + u_i,$$

for $i = 1, 2, \dots, n$. Note that y_i , X_i , β and u_i are 1×1 (i.e., scalar), $1 \times k$, $k \times 1$ and 1×1 (i.e., scalar).

- (1) When we assume $E(X_i u_i) \neq 0$, show that the ordinary least squares estimator of β is an inconsistent estimator.
- (2) Suppose that we have Z_i which satisfies $E(Z_i u_i) = 0$, where Z_i is a $1 \times r$ vector with r > k. We want to get a consistent estimator of β . How do you estimate β ?
- (3) What is an asymptotic distribution of the estimator given by (2)?
- 2 Consider the following regression model:

$$y_{it} = X_{it}\beta + v_i + u_{it},$$

for $t = 1, 2, \dots, T$ and $i = 1, 2, \dots, n$. i denotes the ith individual and t denotes time t.

- (a) Assume that v_i and u_{it} are mutually independent with $E(v_i) = E(u_{it}) = 0$, $V(v_i) = \sigma_v^2$ and $V(u_{it}) = \sigma_u^2$ for $t = 1, 2, \dots, T$ and $i = 1, 2, \dots, n$.
 - (4) Obtain the variance-covariance matrix of $v_i + u_{it}$, defining appropriate matrices.
 - (5) Obtain the generalized least squares (GLS) estimator of β , denoted by b.
 - (6) Derive the joint distribution of y_{it} for $t = 1, 2, \dots, T$ and $i = 1, 2, \dots, n$.
 - (7) How do we obtain the maximum likelihood estimator of β , denoted by $\tilde{\beta}$?
 - (8) Compare b and $\tilde{\beta}$.
 - (9) Discuss about the properties of $\tilde{\beta}$, such as unbiasedness, consistency and efficiency.

- (b) Assume that u_{it} is mutually independent with $E(u_{it}) = 0$ and $V(u_{it}) = \sigma_u^2$ for $t = 1, 2, \dots, T$ and $i = 1, 2, \dots, n$. Suppose that v_i is fixed or stochastic and that v_i may be correlated with X_{it} .
- (10) Define the sample averages as follows:

$$\overline{y}_i = \frac{1}{T} \sum_{t=1}^T y_{it}, \quad \overline{X}_i = \frac{1}{T} \sum_{t=1}^T X_{it}, \quad \overline{u}_i = \frac{1}{T} \sum_{t=1}^T u_{it}.$$

Eliminating v_i from the regression model, we consider estimating the regression model:

$$(y_{it} - \overline{y}_i) = (X_{it} - \overline{X}_i)\beta + (u_{it} - \overline{u}_i).$$

Estimate the above regression model using the ordinary least squares (OLS) method. Obtain the OLS estimator of β , denoted by $\hat{\beta}$.

- (11) Check whether $\tilde{\beta}$ is consistent.
- (c) Consider testing:

the null hypothesis H_0 : there is no correlation between X_{it} and v_i , the alternative hypothesis H_1 : there is correlation between X_{it} and v_i .

- (12) Under H_0 , which estimator should we choose, $\tilde{\beta}$ or $\hat{\beta}$? Why?
- (13) Under H_1 , which estimator should we choose, $\tilde{\beta}$ or $\hat{\beta}$? Why?