Homework (Due: January 23, 2020, AM10:20)

1 We want to estimate the following regression model:
$y_{i}=X_{i} \beta+u_{i}$,
for $i=1,2, \cdots, n$. Note that y_{i}, X_{i}, β and u_{i} are 1×1 (i.e., scalar), $1 \times k, k \times 1$ and 1×1 (i.e., scalar).
(1) When we assume $\mathrm{E}\left(X_{i} u_{i}\right) \neq 0$, show that the ordinary least squares estimator of β is an inconsistent estimator.
(2) Suppose that we have Z_{i} which satisfies $\mathrm{E}\left(Z_{i} u_{i}\right)=0$, where Z_{i} is a $1 \times r$ vector with $r>k$. We want to get a consistent estimator of β. How do you estimate β ?
(3) What is an asymptotic distribution of the estimator given by (2)?

2 Consider the following regression model:

$$
y_{i t}=X_{i t} \beta+v_{i}+u_{i t},
$$

for $t=1,2, \cdots, T$ and $i=1,2, \cdots, n . i$ denotes the i th individual and t denotes time t.
(a) Assume that v_{i} and $u_{i t}$ are mutually independent with $\mathrm{E}\left(v_{i}\right)=\mathrm{E}\left(u_{i t}\right)=0, \mathrm{~V}\left(v_{i}\right)=\sigma_{v}^{2}$ and $\mathrm{V}\left(u_{i t}\right)=\sigma_{u}^{2}$ for $t=1,2, \cdots, T$ and $i=1,2, \cdots, n$.
(4) Obtain the variance-covariance matrix of $v_{i}+u_{i t}$, defining appropriate matrices.
(5) Obtain the generalized least squares (GLS) estimator of β, denoted by b.
(6) Derive the joint distribution of $y_{i t}$ for $t=1,2, \cdots, T$ and $i=1,2, \cdots, n$.
(7) How do we obtain the maximum likelihood estimator of β, denoted by $\tilde{\beta}$?
(8) Compare b and $\tilde{\beta}$.
(9) Discuss about the properties of $\tilde{\beta}$, such as unbiasedness, consistency and efficiency.
(b) Assume that $u_{i t}$ is mutually independent with $\mathrm{E}\left(u_{i t}\right)=0$ and $\mathrm{V}\left(u_{i t}\right)=\sigma_{u}^{2}$ for $t=1,2, \cdots, T$ and $i=1,2, \cdots, n$. Suppose that v_{i} is fixed or stochastic and that v_{i} may be correlated with $X_{i t}$.
(10) Define the sample averages as follows:

$$
\bar{y}_{i}=\frac{1}{T} \sum_{t=1}^{T} y_{i t}, \quad \bar{X}_{i}=\frac{1}{T} \sum_{t=1}^{T} X_{i t}, \quad \bar{u}_{i}=\frac{1}{T} \sum_{t=1}^{T} u_{i t} .
$$

Eliminating v_{i} from the regression model, we consider estimating the regression model:

$$
\left(y_{i t}-\bar{y}_{i}\right)=\left(X_{i t}-\bar{X}_{i}\right) \beta+\left(u_{i t}-\bar{u}_{i}\right) .
$$

Estimate the above regression model using the ordinary least squares (OLS) method. Obtain the OLS estimator of β, denoted by $\hat{\beta}$.
(11) Check whether $\tilde{\beta}$ is consistent.
(c) Consider testing:
the null hypothesis H_{0} : there is no correlation between $X_{i t}$ and v_{i}, the alternative hypothesis H_{1} : there is correlation between $X_{i t}$ and v_{i}.
(12) Under H_{0}, which estimator should we choose, $\tilde{\beta}$ or $\hat{\beta}$? Why?
(13) Under H_{1}, which estimator should we choose, $\tilde{\beta}$ or $\hat{\beta}$? Why?

