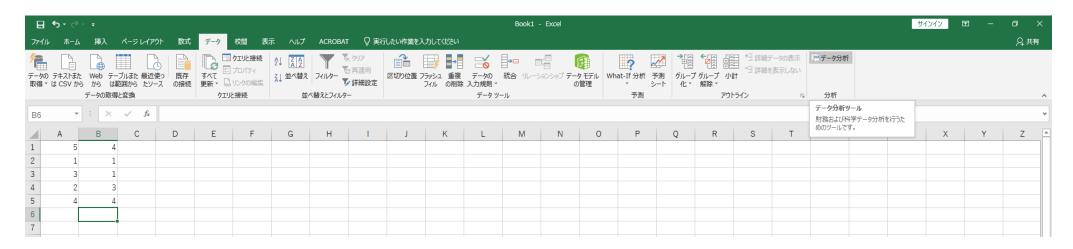
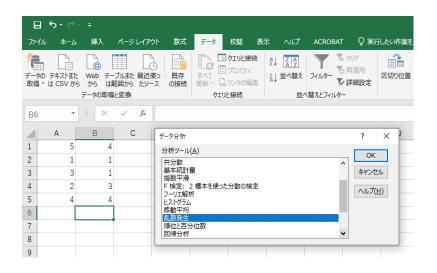
3.4.2 「分析ツール」による回帰分析

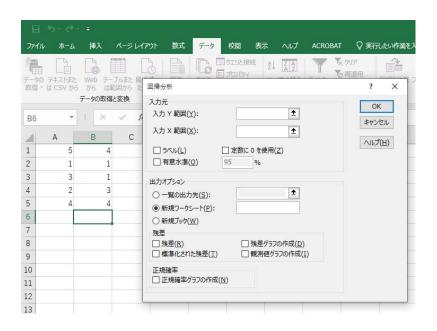
散布図による方法は、単回帰の場合には、比較的簡単に計算できるが、説明変数が2つ以上の重回帰には適用することは出来なくなる。この場合、「分析ツール」を使うと、簡単に、回帰分析を行うことができる。まず、「データ」タブを選ぶ。



「データ分析」のタブをマウスで選択すると、下記のような画面になり、様々なツールが利用できるようになる。主に利用するツールは、「ヒストグラム」と「回帰分析」である。

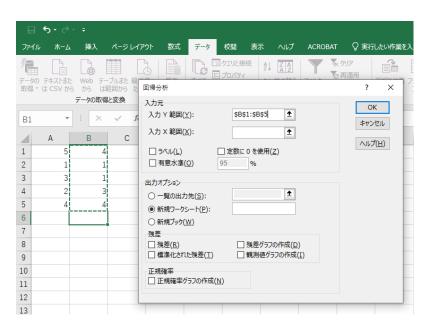


本節では、回帰分析の方法を解説する。まずは、「回帰分析」を選ぶと、下記の画面となる。



「入力 Y 範囲(Y)」に B 列のデータ (被説明変数) を選択する。

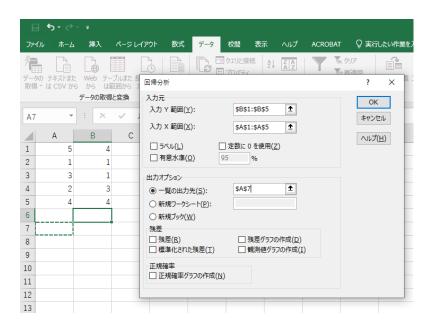
「入力 Y 範囲 (Y)」の右側の空欄をマウスの左ボタンをクリックして、さらに、B1 をマウスの左ボタンでクリック、さらにマウスの左ボタンを押し続けながら B5 でマウスボタンを離す (または、B1:B5 とタイプする)。下記の画面となる。



同様に、「入力 X 範囲 (X)」の右側の空欄をマウスの左ボタンでクリックして、さらに、A1 を左ボタンでクリック、マウスの左ボタンを押し続けながら A5 でマウスボタンを離す (または、A1:A5 と入力する)。下記の画面となる。



「一覧の出力先(S)」にチェックを入れて、その右側の空欄をマウスの左ボタンでクリック、適当な場所をマウスでクリックして選択する(ここでは、A7をクリックする。または、A7とタイプする)。下のような表示になる。



このように入力した後、右側の「OK」ボタンをクリックする。下のような出力結果が得られる。

E	∃ 5-∂	· •								
ファ	イル ホーム	挿入	ページレイア	か 数式	データ	校閲表	示 ヘルプ	ACROBAT	♀ 臭行	したいり
デー	■	らからは	・ブルまた 最近(節囲から たソー		すべて更新・		☆↓	フィルター	くクリア 3 再適用 ・詳細設定	宣
		データの取得	と変換		クエリと	技統	並	べ替えとフィルタ-		
A	7 *	: ×	√ f _x	概要						
4	А	В	С	D	E	F	G	Н	T	
1	5	4								
2	1	1								
3	3	1								
4	2	3								
5	4	4								
6										
	概要									
8										
9	回帰	統計								
10	重相関 R	0.7298								
11	重決定 R2	0.532609								
12	補正 R2	0.376812								
13	標準誤差	1.197219								
14	観測数	5								
15										
16	分散分析表	ŧ								
17		自由度	変動	分散	川された分割	有意F				
18	回帰	1	4.9	4.9	3.418605	0.161594				
19	残差	3	4.3	1.433333						
20	合計	4	9.2							
21										
22		係数	標準誤差	t	P-値	下限 95%	上限 95%	下限 95.0%	上限 95.0%	
23	切片	0.5	1.255654	0.398199	0.717129	-3.49605	4.496051	-3.49605	4.496051	
24	X 值 1	0.7	0.378594	1.848947	0.161594	-0.50485	1.904855	-0.50485	1.904855	
25										
26										
27										
28										•

今までの授業では、下記の水色部分を扱った。

ファ	イル ホーム	挿入	ページレイア	か 数式	データ	校問表	示 ヘルプ	ACROBAT	♀ 実行し	たいど
4	巻 切り取	פא	游ゴシック		· 11 ·	A A =	=	Py → ab #	fり返して全体を	表示で
占り	□ □ □ □ピー	*							こいを結合して中	
							-			₹181 7
	クリップボー	- F	5	フォン	'L	12		配置		
M	1 -	: ×	√ f _x							
4	А	В	С	D	E	F	G	Н	1	
1	5	4								
2	1	1								
3	3	1								
4	2	3								
5	4	4								
6										
7	概要									
8										
9	回帰	統計								
10	重相関 R	0.7298								
11	重決定 R2	0.532609								
12	補正 R2	0.376812								
13	標準誤差	1.197219								
14	観測数	5								
15										
16	分散分析表	ŧ								
17		自由度	変動	分散	∥された分▮	有意F				
18	回帰	1	4.9	4.9	3.418605	0.161594				
19	残差	3	4.3	1.433333						
20	合計	4	9.2							
21										
22		係数	標準誤差	t	P-值	下限 95%	上限 95%	下限 95.0%	上限 95.0%	
23	切片	0.5	1.255654	0.398199	0.717129	-3.49605	4.496051	-3.49605	4.496051	
24	X 値 1	0.7	0.378594	1.848947	0.161594	-0.50485	1.904855	-0.50485	1.904855	

Excelの「重決定 R2」は決定係数、「補正 R2」は自由度修正済み決定係数、「観測数」はデータ数 n のことである。

「残差+自由度」の 3, 「合計+自由度」の 4 はそれぞれ n-k=5-2=3, n-1=5-1=4 であり, 自由度を表す。 また,「残差+変動」の 4.3,「合計+変動」の 9.2 という数字は, それぞれ残差平方和, Y の平均からの差の 二乗和で、次のものである。

$$\sum_{i=1}^{n} \hat{u}_i^2 = 4.3 \qquad \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n\overline{Y}^2 = 43 - 5 \times 2.6^2 = 9.2$$

「切片+係数」の 0.5,「X 値 1+係数」の 0.7 は、切片、傾きを表す (Y=0.7X+0.5)。

得られた数値と今回得られた数値を比較すると、それぞれの数字がどのような意味かがわかるだろう。

3.4.3 決定係数 R²について

●説明変数を増やせば、必ず決定係数 R² は大きくなることを確認する。

都合により、A列のデータ(説明変数)をC列にコピーする。

コピーの方法としては、A1 にマウスを持っていき、マウスの左ボタンを押し続けて、A5 で左ボタンを離す。

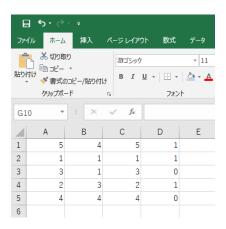
次に、A5 にマウスがある状態で、マウスの右ボタンを押し、「コピー(C)」を選択する。C1 で右ボタンを押

し、「貼り付けのオプション」の一番左のアイコン「貼り付け (P)」を選ぶと、下記のように、A 列が C 列に

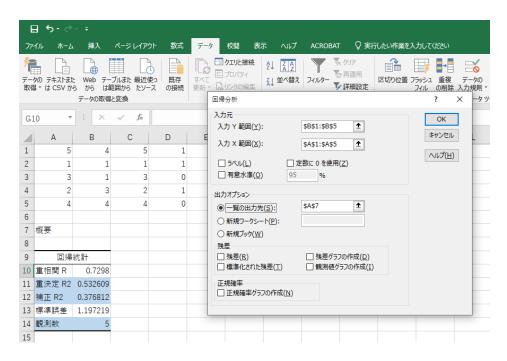
コピーできる。

次に, D列に適当に, 例えば, 1, 1, 0, 1, 0というデータを入力する。

B列を被説明変数, C列·D列を説明変数として回帰分析する。

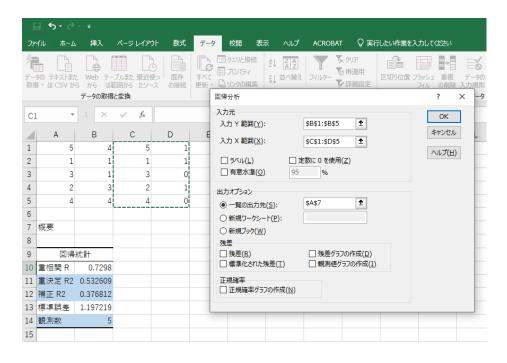


「データ」タブ、「データ分析」、「回帰分析」、「OK」と順番に選択していくと、下記のように前回のものが残ったままになっている。

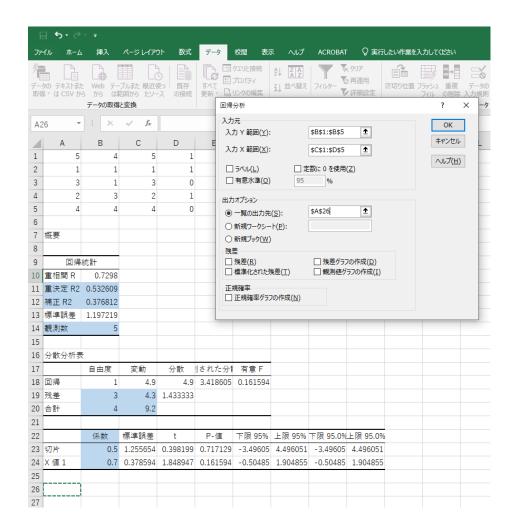


「入力 X 範囲(X)」の欄を削除して、C1 にマウスを置いて、マウスの右ボタンを押し続けて、D5 に移動する

(選択範囲をC1からD5とする)。下記の画面になる。



次に,「一覧の出力先(S)」の欄を削除して,例えば,A26でマウスの左ボタンを押す。 下記の画面となる。



右の「OK」ボタンを押す。

A26 以下に下記の結果が出力される。

E	9 €	· •							
ファ	イル ホーム	挿入	ページ レイア	か 数式	データ	校閲表示	⊼ ヘルプ	ACROBAT	♀ 臭 実行
	りの テキストまた すっ は CSV か		ブルまた 最近で適用から たソー		A		A↓ X A Z X A↓ 並べ替え	7/11/9-	(クリア) 再適用 ・詳細設定
					7170	.1344/L	316.	(G/LC/1/V)	
A2	6 *		√ f _x	概要					
4	А	В	С	D	Е	F	G	Н	1
25									
26	概要								
27									
28	回帰	統計							
29	重相関 R	0.782718							
30	重決定 R2	0.612648							
31	補正 R2	0.225296							
32	標準誤差	1.334848							
33	観測数	5							
34									
35	分散分析表	ξ.							
36		自由度	変動	分散	された分離	有意F			
37	回帰	2	5.636364	2.818182	1.581633	0.387352			
38	残差	2	3.563636	1.781818					
39	合計	4	9.2						
40									
41		係数	標準誤差	t	P-値	下限 95%	上限 95%	下限 95.0%	上限 95.0%
42	切片	-0.23636	1.808885	-0.13067	0.907996	-8.01937	7.546642	-8.01937	7.546642
43	X 值 1	0.781818	0.440886	1.77329	0.218182	-1.11516	2.678796	-1.11516	2.678796
44	X 值 2	0.818182	1.272727	0.642857	0.58618	-4.65792	6.294285	-4.65792	6.294285
45									
46									
47									
48									

D列の変数をZとすると、

 $Y_i = -0.236 + 0.782 X_i + 0.818 Z_i$

という結果となった。

D 列の説明変数を加えたことにより、決定係数は 0.5326 から 0.6126 に増えたが、自由度修正済み決定係数は 0.3768 から 0.2253 へ低下した。

したがって、D列(説明変数)はB列(被説明変数)に影響を与える変数ではないと言える。 言い換えると、B列に取って、D列は重要ではない。

●統計学の知識が必要な部分を薄黄色で表す。

26	概要								
27									
28	回帰	統計							
29	重相関 R	0.782718							
30	重決定 R2	0.612648							
31	補正 R2	0.225296							
32	標準誤差	1.334848							
33	観測数	5							
34									
35	分散分析表	ŧ							
36		自由度	変動	分散	された分	有意F			
37	回帰	2	5.636364	2.818182	1.581633	0.387352			
38	残差	2	3.563636	1.781818					
39	合計	4	9.2						
40									
41		係数	標準誤差	t	P-値	下限 95%	上限 95%	下限 95.0%	上限 95.0%
42	切片	-0.23636	1.808885	-0.13067	0.907996	-8.01937	7.546642	-8.01937	7.546642
43	X 値 1	0.781818	0.440886	1.77329	0.218182	-1.11516	2.678796	-1.11516	2.678796
44	X 値 2	0.818182	1.272727	0.642857	0.58618	-4.65792	6.294285	-4.65792	6.294285
45									

水色は前述の通り、授業で既に解説済み。

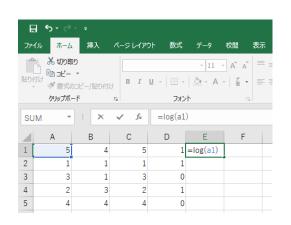
●決定係数を比較するためには、被説明変数が同じでなければならない。 先ほどの例では、

$$Y = 0.5 + 0.7 X$$
 $R^2 = 0.5326$

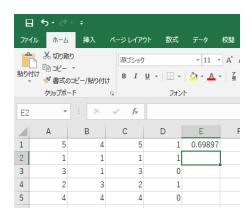
であった。

Y, Xに対数を取って、 $\log Y = \alpha + \beta \log X$ を推定してみる。

E列・F列にA列・B列の対数を求める。E1に「=log(a1)」とタイプする。



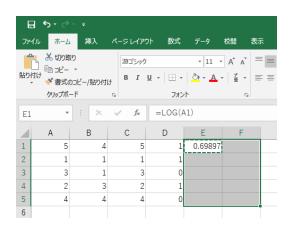
Enter キーを押す。



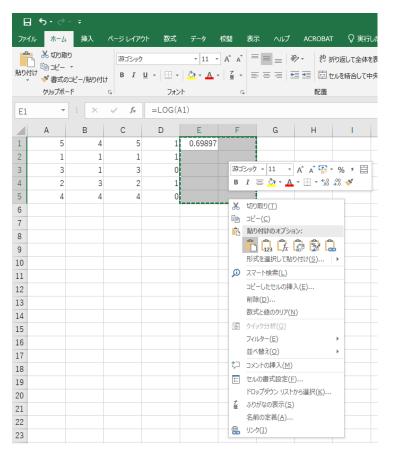
5の常用対数の値(底が10, すなわち, log10 5)がE1に計算される。

E1 にマウスを置いて、マウスの右ボタンを押して、「コピー(C)」を選択する。

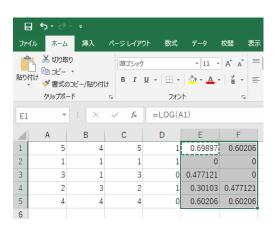
マウスを押し続けながら、F5で、マウスの右ボタンを離すと、下記のようになる。



すぐに、再度、右ボタンを押すと、下記のようになる。



「貼り付けオプション:」の一番左を選択すると、下記のように対数が計算される。



「入力 Y 範囲 (Y)」を F1 から F5, 「入力 X 範囲 (X)」を E1 から E5, 「一覧の出力先 (S)」は適当なところ (ここでは, A46) を選択して,「OK」ボタンを押すと,下記の結果が得られる。

 $\log Y = 0.0254 + 0.7476 \log X$

 $R^2 = 0.4398$

となっている。対数を取る前は,

Y = 0.5 + 0.7 X

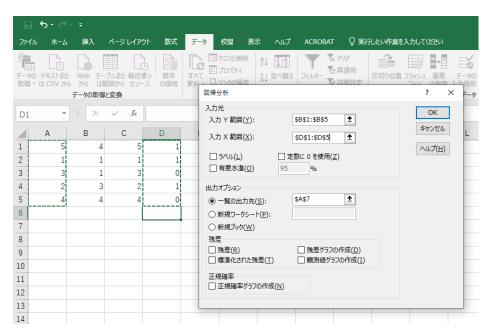
 $R^2 = 0.5326$

で、R²の比較はできない。係数の意味も異なる(この点は後述)。

3.4.4 補足

3.4.3 節の冒頭で、「都合により、A 列のデータ(説明変数)を C 列にコピーする。」と述べた。 そして、C 列・D 列を説明変数として回帰分析を行った。

A列とD列を説明変数とするとどうなるかを見る。

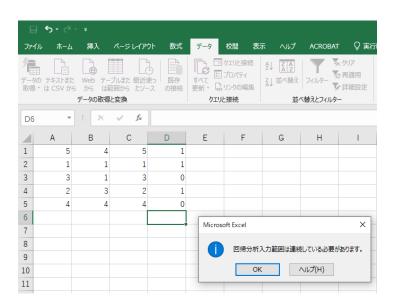


「入力 Y 範囲 (Y)」は B 列 (これは今までと同様), 「一覧の出力先(S)」を A7 にする。

「入力 X 範囲 (X)」に、A 列と D 列を選択する(グラフ作成の時と同様に、A1 から A5 までをマウスの左ボタンを押し続けて選択して、次に、Ctrl キーを押しながら D1 から D5 までをマウスの左ボタンを押し続けて選

択する)。

「OK」を押すと、下記の画面になる。



このように、計算結果が出力されない。

「入力 X 範囲(X)」の選択の際には、説明変数データを隣に並べておく必要がある(説明変数が 3 つであれば、3 列連続に並べなければならない)。

これは、試行錯誤で説明変数の種類を変えて、数多くの式を推定する場合はかなり手間がかかる(推定の度に、毎回、説明変数を連続になるように並べ直すことになる)。

この状況を避けるためには、専門の計量経済ソフトを使うことを勧める。

時間の節約にもなり、簡単に推定結果を出すこともできるようになる。

専門の計量経済ソフト:

- ・有料 → STATA, EVIEWS, TSP, SPSS など(しかし、高価)
- ・無料 → R, Python, Gret l など(ただし, R や Python は若干のプログラミングの知識が必要)

総合的には、Gretlがおすすめ。

http://gretl.sourceforge.net/

からダウンロード (windows 版, mac 版あり)

ただし、英語

第4章 統計学の基礎:復習

4.1 確率変数,確率分布について

確率変数は,通常,大文字のアルファベット(例えば,X)で表すのに対して,実際に起こった値(すなわち,実現値)を小文字(例えば,x)で表す。

確率変数には離散型確率変数と連続型確率変数がある。まず,離散型確率変数 X を考える。

Xの取り得る値は分かっている。例えば, $X=x_1,x_2,\cdots,x_n$ のn通りの値を取るものとする。それぞれの値には確率が割り当てられる。すなわち, $\operatorname{Prob}(X=x_i)=p_i$ と表記し,確率変数 X が x_i を取る確率は p_i である」と読む。 p_i は確率であり,しかも,X は x_1,x_2,\cdots,x_n のいずれかの値を取るので, $\sum_{i=1}^n p_i=1$ となる。また, p_i は x_i の関数であり, $f(x_i)$ と表すことができる。 $f(x_i)$ を確率関数と呼ぶ。 $f(x_i)$ は, $f(x_i) \geq 0$, $f(x_i) \geq 0$, $f(x_i) = 1$ を満たす関数でなければならない。

Xをサイコロを投げて出た目としよう。このとき,Xの取る値は1,2,3,4,5,6 で,それぞれの目が出る確率は $\frac{1}{6}$ となる。したがって, $x_i=i$, $p_i=\frac{1}{6}$,i=1,2,3,4,5,6となる。

Xが連続型確率変数の場合は,ある値aから別の値bまでの区間に入る確率 $\mathbf{Prob}(a < X < b)$ という意味になる(ただし,a < b)。この場合,f(x),x = a,x = b,x 軸で囲まれた面積が

確率を表すことになる。すなわち、

$$\mathbf{Prob}(a < X < b) = \int_{a}^{b} f(x) \mathbf{d}x,$$

となり、f(x) を確率密度関数、または、密度関数と呼ぶ。f(x) は、f(x) と f(x) は、f(x) と f(x) は、f(x) と f(x) の f(x) も f(x) と f(x) と f(x) も f(x) と f(x)

離散型の $f(\cdot)$ と連続型の $f(\cdot)$ の違いは , 前者は $f(\cdot)$ そのものが確率を表すのに対して , 後者の $f(\cdot)$ は面積が確率を表す(すなわち , 連続型の $f(\cdot)$ の高さは確率を表さない)。

分布関数 (累積分布関数): 分布関数 (累積分布関数) F(x) は,

$$F(x) = \mathbf{Prob}(X \le x) = egin{cases} \sum_{i=1}^r f(x_i) & X \,$$
が離散型確率変数のとき $\int_{-\infty}^x f(t) \mathbf{d}t & X \,$ が連続型確率変数のとき

ただし,離散型の場合,r は $x_r \le x < x_{r+1}$ となる r である。すなわち,離散型の場合,F(x) は 0 と 1 の間の階段状(階段関数)となる。

同時確率分布: 2つの確率変数 X,Y を考える。離散型の場合,X の取る値を x_1,X_2,\cdots,x_n とし,Y の取る値を y_1,y_2,\cdots,y_m としたとき,X が x_i を取り,かつ,Y が y_j を取る確率を同時確率分布と呼び,下記のように表す。

Prob(
$$X = x_i, Y = y_j$$
) = p_{ij}

 p_{ij} は x_i, y_i の関数となり, $p_{ij} = f(x_i, y_i)$ と表す。 $f(x_i, y_i)$ を同時確率関数と呼ぶ。

連続型の場合は,X が c と d の間の値(ただし,a < b)を取り,かつ,Y が c と d の間の値(ただし,c < d)を取る確率は,下記のように表される。

$$\mathbf{Prob}(a < X < b, c < Y < d) = \int_a^b \int_c^d f(x, y) \mathbf{d}y \mathbf{d}x$$

f(x,y) を同時確率密度関数(または,同時密度関数)と呼ぶ。

4.2 期待値・分散・共分散の定義・定理

4.2.1 期待値の定義

定義 (期待値 , 1 変数) : 確率変数 X , ある関数 $g(\cdot)$ とするとき , g(X) の期待値は次のように定義される。

$$\mathbf{E}(g(X)) = \begin{cases} \sum_{i=1}^{n} g(x_i) f(x_i), & X \text{ が離散型確率変数のとき} \\ \int_{-\infty}^{\infty} g(x) f(x) \mathbf{d}x, & X \text{ が連続型確率変数のとき} \end{cases}$$
(4.1)

ただし $, f(\cdot)$ は確率関数(離散型のとき),または、密度関数(連続型のとき)を表す。

定義 (期待値,2 変数): 確率変数 X, Y, ある関数 $g(\cdot,\cdot)$ とするとき, g(X,Y) の期待値は次のように定義される。

$$\mathbf{E}(g(X,Y)) = egin{dcases} \sum_{i=1}^n \sum_{j=1}^m g(x_i,y_j) f(x_i,y_j), \ X \ , \ Y \ \emph{が離散型確率変数のとき} \ \int_{-\infty}^\infty \int_{-\infty}^\infty g(x,y) f(x,y) \mathbf{d}y \mathbf{d}x, \ X \ , \ Y \ \emph{が連続型確率変数のとき} \end{cases}$$
 (4.2)

ただし, $f(\cdot,\cdot)$ は確率関数(離散型のとき),または,密度関数(連続型のとき)を表す。

2 変数 (X, Y) を n 変数 (X_1, X_2, \dots, X_n) に拡張することも出来る。

4.2.2 期待値の定理

定理 (1 変数): X を確率変数とする。a + bX の期待値は,

$$\mathbf{E}(a+bX) = a+b\mathbf{E}(X),\tag{4.3}$$

となる。ただし,a,b は定数とする。g(X)=a+bX に対応する。

定理 (2 変数): X,Y を確率変数とする。X+Y の期待値は,

$$\mathbf{E}(X+Y) = \mathbf{E}(X) + \mathbf{E}(Y),$$

(4.4)

となる。g(X,Y) = X + Y に対応する。

定理 (多変数): n 個の確率変数 X_1, X_2, \dots, X_n を考える。このとき , $\sum_{i=1}^n c_i X_i$ の平均は ,

$$\mathbf{E}(\sum_{i=1}^{n} c_{i} X_{i}) = \sum_{i=1}^{n} c_{i} \mathbf{E}(X_{i}), \tag{4.5}$$

となる。

4.2.3 分散・共分散の定義・定理

定義 (1 変数): X を確率変数とする。X の分散 $\sigma^2 = \mathbf{V}(X)$ は,

$$\sigma^2 = \mathbf{V}(X) = \mathbf{E}((X - \mu)^2),\tag{4.6}$$

である。ただし, $\mu = \mathbf{E}(X)$ とする。 $g(X) = (X - \mu)^2$ に対応する。

定義 (1 変数): X を確率変数とする。X の標準偏差 σ は ,

$$\sigma = \sqrt{\mathbf{V}(X)} \tag{4.7}$$

である。

定理 (1 变数): X を確率変数とする。X の分散は,

$$\mathbf{V}(X) = \mathbf{E}(X^2) - \mu^2,\tag{4.8}$$

と書き換えられる。ただし , $\mu = \mathbf{E}(X)$ とする。

定理 (1 変数): X を確率変数とする。a + bX の分散は A

$$\mathbf{V}(a+bX) = \mathbf{V}(bX) = b^2 \mathbf{V}(X), \tag{4.9}$$

となる。ただし, a, b は定数とする。

定理 (1 変数):
$$X$$
 を平均 μ , 分散 σ^2 の確率変数とする。 $Z=\frac{X-\mu}{\sigma}$ について ,

$$\mathbf{E}(Z) = 0, \qquad \mathbf{V}(Z) = 1, \tag{4.10}$$

となる。この変換を標準化,または,基準化と呼ぶ。

定義 (2 変数): X, Y を確率変数とする。 X と Y の共分散 σ_{XY} = $\mathbf{Cov}(X,Y)$ は,

$$\sigma_{XY} = \mathbf{Cov}(X, Y) = \mathbf{E}((X - \mu_X)(Y - \mu_Y)), \tag{4.11}$$

となる。Cov(X,Y) について, $g(X,Y) = (X - \mu_X)(Y - \mu_Y)$ に対応する。

定義 (2 変数): X, Y を確率変数とする。X と Y の相関係数 ρ_{XY} は,

$$\rho_{XY} = \frac{\mathbf{Cov}(X,Y)}{\sqrt{\mathbf{V}(X)}\sqrt{\mathbf{V}(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y},\tag{4.12}$$

となる。ただし, $\sigma_X^2 = \mathbf{V}(X)$, $\sigma_Y^2 = \mathbf{V}(Y)$ とする。

定理 (2 变数): X, Y を確率変数とする。X と Y の共分散は,

$$\mathbf{Cov}(X,Y) = \mathbf{E}(XY) - \mu_X \mu_Y,$$

(4.13)

と書き換えられる。 $\mathbf{E}(XY)$ について , g(X,Y)=XY に対応する。

定理 (2 変数): X, Yを確率変数とする。X+Yの分散は,

$$\mathbf{V}(X+Y) = \mathbf{V}(X) + 2\mathbf{Cov}(X,Y) + \mathbf{V}(Y),$$

(4.14)

となる。

定理 (2 变数): X, Y を確率変数とする。 $X \ge Y$ が独立のとき, $X \ge Y$ の共分散は,

$$\mathbf{Cov}(X,Y) = 0, (4.15)$$

となる。

定理 $(2 \odot 2): X, Y$ を確率変数とする。 $X \cup Y$ が独立のとき,X + Y の分散は,

$$\mathbf{V}(X+Y) = \mathbf{V}(X) + \mathbf{V}(Y),$$

(4.16)

となる。

定理 (多変数): n 個の独立な確率変数 X_1,X_2,\cdots,X_n を考える。このとき , $\sum_{i=1}^n c_i X_i$ の分散は ,

$$\mathbf{V}(\sum_{i=1}^{n} c_i X_i) = \sum_{i=1}^{n} c_i^2 \mathbf{V}(X_i), \tag{4.17}$$

となる。

4.3 正規分布について

確率変数 X の密度関数 f(x) が,

$$f(x) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right),$$

となるとき , f(x) を正規分布と呼ぶ。ただし , $\exp(x)=e^x$ である。e は自然対数の底と呼ばれ , $e=\lim_{n\to\infty}\Bigl(1+\frac{1}{n}\Bigr)^n=2.7182818284590452353602874713... と定義される。$

上記の正規分布は、

$$\mathbf{E}(X) = \mu, \quad \mathbf{V}(X) = \sigma^2,$$

となる (期待値の定義通りに計算すればよい)。

確率変数 X が上記の密度関数 f(x) となるとき, $X \sim N(\mu, \sigma^2)$ と表す。 $X \sim N(\mu, \sigma^2)$ とは,X は平均 μ ,分散 σ^2 の正規分布に従う」と言う意味である。すなわち,X は正規分布 (Normal distribution) のアルファベットの頭文字で,X は「に従う」と読む。

定理(標準化,基準化): (4.10)のように X を基準化する。

$$X \sim N(\mu, \sigma^2)$$
 のとき, $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ (4.18)

基準化によって,X がどの分布に従う確率変数であっても,平均 $\mathbf{0}$,分散 $\mathbf{1}$ に変換することができるということを ($\mathbf{4.10}$) の定理は示している。($\mathbf{4.18}$) では,さらに進んで,X が正規分布であれば,Z も正規分布となるということを言っている。この証明は,変数変換(置換積分)を利用して証明することになる(本書では証明略)。平均 $\mathbf{0}$,分散 $\mathbf{1}$ の正規分布N(0,1)は,標準正規分布と呼ばれる。

標準正規分布の確率分布表があれば,一般の正規分布の確率を得ることができる。すなわち, μ と σ^2 が既知とするとき,Z が z より大きい確率 $\mathbf{Prob}(Z>z)$ について, $\mathbf{Prob}(Z>z)$ = $\mathbf{Prob}(X>\mu+z\sigma)$ となる。同様に,X が x より大きい確率 $\mathbf{Prob}(X>x)$ について,

 $\mathbf{Prob}(X > x) = \mathbf{Prob}(Z > \frac{x - \mu}{\sigma})$ となる。**453** ページの付表 1 を用いると,標準正規分布の確率,すなわち, $\mathbf{Prob}(Z > z)$ を求めることができる。

(4.5) 式と (4.16) 式によって,n 個の独立な確率変数 X_1, X_2, \dots, X_n が同一の分布(平均,分散が同じ分布)に従うとき, $\sum_{i=1}^n c_i X_i$ の平均,分散は,

$$\mathbf{E}(\sum_{i=1}^{n} c_{i} X_{i}) = \mu \sum_{i=1}^{n} c_{i}, \qquad \mathbf{V}(\sum_{i=1}^{n} c_{i} X_{i}) = \sigma^{2} \sum_{i=1}^{n} c_{i}^{2}$$

となる。ただし, すべての i について $\mu = \mathbf{E}(X_i)$, $\sigma^2 = \mathbf{V}(X_i)$ とする。

n 個の独立な確率変数 X_1, X_2, \dots, X_n が同一の正規分布に従うものとする。すなわち, すべ

ての i について $X_i \sim N(\mu, \sigma^2)$ とする。このとき ,

$$\sum_{i=1}^{n} c_i X_i \sim N(\mu \sum_{i=1}^{n} c_i, \sigma^2 \sum_{i=1}^{n} c_i^2)$$

となる。すなわち,正規分布に従う確率変数の加重和もまた正規分布となる。この証明はそれほど簡単ではなく,積率母関数を利用して証明することになる(本書では証明略)。

特に,標本平均 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ を考えると,

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

となる (すべての i について , $c_i = \frac{1}{n}$ の場合を考えればよい)。

4.4 統計値・統計量,推定値・推定量について

- 1. 理論標本 , 理論観測値 $\Longrightarrow X_1, X_2, \cdots, X_n \Longrightarrow$ 確率変数
- 2. 実現された標本,実現された観測値,実現値,観測値 $\Longrightarrow x_1, x_2, \cdots, x_n \Longrightarrow$ 観測データ
- 1. 理論観測値 X_1, X_2, \dots, X_n の関数 \Longrightarrow 統計量
- 2. すべての i について , $\mu = \mathbb{E}(X_i)$ と仮定する。
- 3. 母平均 μ の推定に使われる統計量 $\Longrightarrow \mu$ の推定量

(a)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 は μ の推定量

(b)
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 は σ^2 の推定量

4. 実現された標本を用いて実際に計算された推定量の値 ⇒ 推定値

(a)
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 は μ の推定値

(b)
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$
 は σ^2 の推定値

5. μ や σ^2 の推定量の候補は無数に考えられる。

4.5 大数の法則と中心極限定理

4.5.1 大数の法則

大数の法則:その1 n 個の確率変数 X_1,X_2,\cdots,X_n は互いに独立ですべて同じ分布にしたがい,すべての = $1,2,\cdots,n$ について $\mathbf{E}(X_i)=\mu$ とする。 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ (すなわち,標本平均)とする。

$$n \longrightarrow \infty$$
 のとき,

$$\overline{X} \longrightarrow \mu$$

大数の法則:その2 n 個の確率変数 X_1, X_2, \cdots, X_n を考える(互いに独立である必要はなく,同じ分布である必要もない)。

$$\mu = \lim_{n \to \infty} \frac{1}{n} \mathbf{E}(\sum_{i=1}^{n} X_i) < \infty, \qquad \sigma^2 = \lim_{n \to \infty} \frac{1}{n} \mathbf{V}(\sum_{i=1}^{n} X_i) < \infty$$

とする。

$$n \longrightarrow \infty$$
 のとき,

$$\overline{X} \longrightarrow \mu$$

4.5.2 中心極限定理

中心極限定理:その 1 n 個の確率変数 X_1, X_2, \cdots, X_n は互いに独立ですべて同じ分布にしたがい,すべての $=1,2,\cdots,n$ について $\mathbf{E}(X_i)=\mu$, $\mathbf{V}(X_i)=\sigma^2$ とする。 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ とする。 $n\longrightarrow\infty$ のとき,

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1)$$

となる。 $\mathbf{E}(\overline{X}) = \mu$, $\mathbf{V}(\overline{X}) = \sigma^2/n$ に注意せよ。

中心極限定理:その2 n 個の確率変数 X_1, X_2, \cdots, X_n を考える(互いに独立である必要はなく,同じ分布である必要もない)。

$$\mu = \lim_{n \to \infty} \frac{1}{n} \mathbf{E}(\sum_{i=1}^{n} X_i) < \infty, \qquad \sigma^2 = \lim_{n \to \infty} \frac{1}{n} \mathbf{V}(\sum_{i=1}^{n} X_i) < \infty$$

とする。

$$n \longrightarrow \infty$$
 のとき,

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1)$$

4.6 推定量の望ましい性質

 \hat{a} , $\hat{\beta}$ の性質を求めるために

4.6.1 不偏性

ある母集団のある母数 θ に対して , θ の推定量として $\hat{\theta}$ を考える。このとき ,

$$\mathbf{E}(\hat{\theta}) = \theta$$

となるとき , $\hat{\theta}$ は θ の不偏推定量であると言う。 $\hat{\theta}$ は不偏性を持つと言う。 $\mathbf{E}(\hat{\theta})$ – θ は偏りと定義される。

n 個の確率変数 X_1,X_2,\cdots,X_n に関して,すべての = $1,2,\cdots,n$ について $\mathbf{E}(X_i)=\mu$ とするとき,標本平均 \overline{X} は μ の不偏推定量である。

証明:

$$\mathbf{E}(\overline{X}) = \mathbf{E}(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n}\sum_{i=1}^{n}\mathbf{E}(X_i) = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

このように , $\mathbf{E}(\overline{X}) = \mu$ なので , 標本平均 \overline{X} は μ の不偏推定量となる。

4.6.2 有効性(最小分散性)

ある母数 θ に対して, $\hat{\theta}_1$ と $\hat{\theta}_2$ の 2 つの不偏推定量を考える。このとき, $\mathbf{V}(\hat{\theta}_1) \leq \mathbf{V}(\hat{\theta}_2)$ が成り立つとき, $\hat{\theta}_1$ は $\hat{\theta}_2$ より有効であると言う。

ある母数 θ に対して,可能なすべての不偏推定量を考え, $\hat{\theta}$ が最も小さな分散を持つ不偏推定量であるとする。このとき, $\hat{\theta}$ を最小分散不偏推定量,または,最良不偏推定量と言う。

一般に,有効推定量が存在するとは限らない。代わりに,推定量 $\sum_{i=1}^n c_i X_i$ (すなわち,線形推定量)の中で最も小さい分散を持つ推定量を求めることを考える。この推定量を最良線形不偏推定量と呼ぶ。

標本平均 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ は不偏推定量の中で最も小さな分散を持つ推定量である。

証明:

期待値を取ると、

$$\mathbf{E}(\sum_{i=1}^{n} c_{i} X_{i}) = \sum_{i=1}^{n} c_{i} \mathbf{E}(X_{i}) = \mu \sum_{i=1}^{n} c_{i}$$

となる。 $\sum_{i=1}^n c_i X_i$ が不偏推定量になるためには $\sum_{i=1}^n c_i = 1$ が必要となる。分散は,

$$\mathbf{V}(\sum_{i=1}^{n} c_i X_i) = \sum_{i=1}^{n} \mathbf{V}(c_i X_i) = \sum_{i=1}^{n} c_i^2 \mathbf{V}(X_i) = \sigma^2 \sum_{i=1}^{n} c_i^2$$

となる。

したがって,最良線形不偏推定量を得るためには, $\sum_{i=1}^n c_i=1$ の条件のもとで, $\sum_{i=1}^n c_i^2$ を最小にする c_1,c_2,\cdots,c_n を求めればよい。ラグランジェ未定乗数法を用いれば, $c_i=\frac{1}{n}$ が得られる。

4.6.3 一致性

ある母数 θ について推定量 $\hat{\theta}$ を考える。n 個の標本から構成された推定量を $\hat{\theta}^{(n)}$ と定義する。数列 $\hat{\theta}^{(1)}$, $\hat{\theta}^{(2)}$, \cdots , $\hat{\theta}^{(n)}$, \cdots を考える。十分大きな n について , $\hat{\theta}^{(n)}$ が θ に確率的に収束するとき , $\hat{\theta}$ は θ の一致推定量であると言う。

$$\hat{\theta} \longrightarrow \theta$$
, $\sharp \hbar \Box$, $\lim \hat{\theta} = \theta$,

と表現する。plim とは probability limit の略である。

$$\mathbf{E}(\hat{\theta}) = \theta$$
 とする。 $n \to \infty$ のとき $\mathbf{V}(\hat{\theta}) \to 0$ が成り立てば, $\hat{\theta}$ は θ の一致推定量である。

 μ の推定量 \overline{X} を調べる。

$$\mathbf{E}(\overline{X}) = \mu$$

である。

$$\mathbf{V}(\overline{X}) = \frac{\sigma^2}{n}$$

となる。 $n \to \infty$ のとき,

$$\mathbf{V}(\overline{X}) = \frac{\sigma^2}{n} \longrightarrow 0$$

となるので, \overline{X} は μ の一致推定量であると言える。

4.7 χ^2 分布

m 個の確率変数 Z_1,Z_2,\cdots,Z_m は,互いに独立な標準正規分布に従うものとする。このとき, $Y=\sum_{i=1}^m Z_i^2$ は,自由度 m の χ^2 分布に従う。

 $Y \sim \chi^2(m)$, または, $Y \sim \chi_m^2$ と表記する。

 χ^2 (カイ二乗) 分布表から確率を求める。

$$Y \sim \chi^2(m)$$
 のとき, $\mathbf{E}(Y) = m$, $\mathbf{V}(Y) = 2m$ となる。(証明略)

- **1. 2** つの独立な χ^2 分布からの確率変数 X,Y を考える。 $X \sim \chi^2(n)$, $Y \sim \chi^2(m)$ とする。このとき , $Z = X + Y \sim \chi^2(n+m)$ となる。(証明略)
- **2.** n 個の独立な確率変数 X_1, X_2, \dots, X_n が同一の正規分布 $N(\mu, \sigma^2)$ に従うものとする。

3.
$$\frac{X_i - \mu}{\sigma} \sim N(0, 1)$$
 なので , $\left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(1)$ となる。

$$\frac{X_1-\mu}{\sigma}, \frac{X_2-\mu}{\sigma}, \cdots, \frac{X_n-\mu}{\sigma}$$
 はそれぞれ独立なので,

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)$$

となる。

4.
$$\mu$$
 を \overline{X} に置き換えると,

$$\sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma} \right)^2 \sim \chi^2(n-1)$$

となる。(証明は後述)

さらに,

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

を定義すると,

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

となる。 S^2 は σ^2 の不偏推定量である (後述)。

5. すなわち,

$$\mathbf{E}\left(\frac{(n-1)S^2}{\sigma^2}\right) = n-1 \qquad \mathbf{V}\left(\frac{(n-1)S^2}{\sigma^2}\right) = 2(n-1),$$

4.8 *t* 分布

正規分布の重要な定理: n 個の独立な確率変数 X_1, X_2, \cdots, X_n が同一の正規分布 $N(\mu, \sigma^2)$ に従うものとする。このとき、

$$\sum_{i=1}^{n} c_i X_i \sim N(\mu \sum_{i=1}^{n} c_i, \sigma^2 \sum_{i=1}^{n} c_i^2)$$

となる。ただし, c_1, c_2, \dots, c_n は定数とする。

t 分布: Z を標準正規分布,Y を自由度 m の χ^2 分布に従い,両者は独立な確率変数とする。このとき, $U=\frac{Z}{\sqrt{Y/m}}$ は,自由度 m の t 分布に従う。

 $U \sim t(m)$, または, $U \sim t_m$ と表記する。

 $U \sim t(m)$ のとき , m>1 について $\mathbf{E}(U)=0$, m>2 について $\mathbf{V}(U)=\frac{m}{m-2}$ となる。(証明略)

t 分布表から確率を求める。(表 9.1.3 を見よ)

- 1. ゼロを中心に左右対称。($\mathbf{E}(U) = 0$)
- 2. t 分布は , 標準正規分布より裾野の広い分布 (なぜなら , $\mathbf{V}(U) = \frac{m}{m-2} > 1$)
- 3. $m\longrightarrow\infty$ のとき , $t(m)\longrightarrow N(0,1)$ となる。(期待値は m>1 について $\mathbf{E}(U)=0$, 分散は $\mathbf{V}(U)=\frac{m}{m-2}\longrightarrow 1$)

4.9 標本平均 \overline{X} の分布

 X_1,X_2,\cdots,X_n の n 個の確率変数は,互いに独立で,平均 μ ,分散 σ^2 の正規分布に従うものとする。

1.
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 なので , $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ となる。

2.
$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \chi^2(n-1)$$
 である。(証明は略)

3.
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \succeq \frac{(n-1)S^2}{\sigma^2}$$
 は独立。(証明は略) すなわち、 $\overline{X} \succeq S^2$ は独立。

4. したがって.

$$\frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2} / n - 1}} = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

を得る。

重要な結果は、

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

ただし,
$$\overline{X}=rac{1}{n}\sum_{i=1}^{n}X_{i}$$
, $S^{2}=rac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$ である。

 σ^2 を S^2 に置き換えると,正規分布から t 分布になる。

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \implies \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n - 1)$$

4.10 区間推定(信頼区間)

 \overline{X} の分布を利用して, μ の信頼区間を求める。

1. \overline{X} の分布は以下の通り。

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n - 1)$$

2. $t_{\alpha/2}(n-1)$, $t_{1-\alpha/2}(n-1)$ を自由度 n-1 の t 分布の上から $100 \times \frac{\alpha}{2}$ % 点 , $100 \times (1-\frac{\alpha}{2})$

% 点の値とする。このとき,

Prob
$$\left(t_{1-\alpha/2}(n-1) < \frac{\overline{X} - \mu}{S / \sqrt{n}} < t_{\alpha/2}(n-1)\right) = 1 - \alpha$$

となる。ただし,自由度とlphaが決まれば, $t_{lpha/2}(n-1)$, $t_{1-lpha/2}(n-1)$ はt 分布表から得られる。

3. t 分布は左右対称なので,

$$t_{1-\alpha/2}(n-1) = -t_{\alpha/2}(n-1) \qquad t_{\alpha/2}(n-1) = |t_{1-\alpha/2}(n-1)|$$

$$t_{1-\alpha/2}(n-1) = -|t_{\alpha/2}(n-1)|$$

4. 書き直して .

$$\mathbf{Prob}\left(\overline{X} - t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}\right) = 1 - \alpha$$

- 5. μ が区間 $(\overline{X} t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}})$ にある確率は $1-\alpha$ である。
- **6.** 推定量 \overline{X} , S^2 をその推定値 \overline{x} , s^2 で置き換える。ただし, $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$, $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x})^2$ とする。
- 7. 区間 $(\overline{x}-t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}},\overline{x}+t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}})$ を信頼係数 $1-\alpha$ の信頼区間といい, $\overline{x}-t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}$ を信頼下限, $\overline{x}+t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}$ を信頼上限と呼ぶ。

4.11 仮説検定

 \overline{X} の分布を利用して, μ の仮説検定を行う。

- **1.** 帰無仮説 $H_0: \mu = \mu_0$ 対立仮説 $H_1: \mu \neq \mu_0$
- 2. 帰無仮説 $H_0: \mu = \mu_0$ が正しいもとでの分布は,

$$\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n - 1)$$

となる。

3. Prob
$$\left(t_{1-\alpha/2}(n-1) < \frac{\overline{X} - \mu_0}{S/\sqrt{n}} < t_{\alpha/2}(n-1)\right) = 1 - \alpha$$

 $t_{lpha/2}(n-1)$, $t_{1-lpha/2}(n-1)$ をそれぞれ自由度 n-1 の t 分布の上から $100 imes rac{lpha}{2}$ % 点 , $100 imes rac{1-lpha}{2}$

% 点の値とする。

自由度と α が決まれば, $t_{\alpha/2}(n-1)$, $t_{1-\alpha/2}(n-1)$ はt分布表から得られる。

- **4.** α を有意水準と呼ぶ。慣習的に $\alpha = 0.01, 0.05$ が使われる。
- 5. $-t_{\alpha/2}(n-1) > \frac{\overline{X} \mu_0}{S/\sqrt{n}}$, または, $\frac{\overline{X} \mu_0}{S/\sqrt{n}} > t_{\alpha/2}(n-1)$ ならば,帰無仮説 $H_0: \mu = \mu_0$ は,分布の端にあり,起こりにくいと考える。
 - \Longrightarrow 有意水準 α で帰無仮説 $H_0: \mu = \mu_0$ を棄却する。
- 6. 実際の検定手続:
 - (a) \overline{X} , S^2 を実績値で置き換えて,

$$\frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

を得る。ただし,
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ とする。

(b)
$$-t_{\alpha/2}(n-1)>rac{\overline{x}-\mu_0}{s/\sqrt{n}}$$
 , または , $\frac{\overline{x}-\mu_0}{s/\sqrt{n}}>t_{\alpha/2}(n-1)$ ならば , 有意水準 $lpha$ で帰無仮

説 H_0 : $\mu = \mu_0$ を棄却する。