
Econometrics I
(Thur., 8:50-10:20)

Room # 4 (法経講義棟)

• The prerequisite of this class is Basic Statistics (統計基礎) (by Prof. Fukushige,

Tue., 16:20-17:50, this semester) and Econometrics (エコノメトリックス) (under-

graduate level, next semester,『計量経済学』山本拓著，新世社).

• The class of Special Lectures in Economics (Statistical Analysis), 経済学特

論（統計解析） (by Prof. Fukushige, Tue., 14:40-16:10, this semester) should be

registered.
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TA Session: −→ (No TA Session in April)
TAs: Mr. Hiroki Kato (加藤大貴)

vge008kh [at] student.econ.osaka-u.ac.jp

Mr. Ang Lu (呂昂)
lvang12 [at] hotmail.com

Fri., 13:00 - 14:30

Room # ???

Content: Basic Statistics, Matrix Algebra, and etc.
TAs will answer questions about homeworks, too.
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1 Regression Analysis (回帰分析) — Review

1.1 Setup of the Model

When (x1, y1), (x2, y2), · · ·, (xn, yn) are available, suppose that there is a linear rela-

tionship between y and x, i.e.,

yi = β1 + β2xi + ui, (1)

for i = 1, 2, · · · , n. xi and yi denote the ith observations.

−→ Single (or simple) regression model (単回帰モデル)

yi is called the dependent variable (従属変数) or the explained variable (被説明変

数), while xi is known as the independent variable (独立変数) or the explanatory

(or explaining) variable (説明変数).
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β1 = Intercept (切片), β2 = Slope (傾き)

β1 and β2 are unknown parameters (パラメータ，母数) to be estimated.

β1 and β2 are called the regression coefficients (回帰係数).

ui is the unobserved error term (誤差項) assumed to be a random variable with mean

zero and variance σ2.

σ2 is also a parameter to be estimated.

xi is assumed to be nonstochastic (非確率的), but yi is stochastic (確率的) because

yi depends on the error ui.

The error terms u1, u2, · · ·, un are assumed to be mutually independently and identi-

cally distributed, which is called iid. −→ discussed later.

It is assumed that ui has a distribution with mean zero, i.e., E(ui) = 0 is assumed.
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Taking the expectation on both sides of (1), the expectation of yi is represented as:

E(yi) = E(β1 + β2xi + ui) = β1 + β2xi + E(ui)

= β1 + β2xi, (2)

for i = 1, 2, · · · , n. Using E(yi) we can rewrite (1) as yi = E(yi) + ui.

(2) represents the true regression line.

Let β̂1 and β̂2 be estimates of β1 and β2.

Replacing β1 and β2 by β̂1 and β̂2, (1) turns out to be:

yi = β̂1 + β̂2xi + ei, (3)

for i = 1, 2, · · · , n, where ei is called the residual (残差).

The residual ei is taken as the experimental value (or realization) of ui.
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We define ŷi as follows:

ŷi = β̂1 + β̂2xi, (4)

for i = 1, 2, · · · , n, which is interpreted as the predicted value (予測値) of yi.

(4) indicates the estimated regression line, which is different from (2).

Moreover, using ŷi we can rewrite (3) as yi = ŷi + ei.

(2) and (4) are displayed in Figure 1.

Consider the case of n = 6 for simplicity. × indicates the observed data series.

The true regression line (2) is represented by the solid line, while the estimated re-

gression line (4) is drawn with the dotted line.

Based on the observed data, β1 and β2 are estimated as: β̂1 and β̂2.
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Figure 1. True and Estimated Regression Lines (回帰直線)
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In the next section, we consider how to obtain the estimates of β1 and β2, i.e., β̂1 and

β̂2.
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1.2 Ordinary Least Squares Estimation

Suppose that (x1, y1), (x2, y2), · · ·, (xn, yn) are available.

For the regression model (1), we consider estimating β1 and β2.

Replacing β1 and β2 by their estimates β̂1 and β̂2, remember that the residual ei is

given by:

ei = yi − ŷi = yi − β̂1 − β̂2xi.

The sum of squared residuals is defined as follows:

S (β̂1, β̂2) =

n∑

i=1

e2
i =

n∑

i=1

(yi − β̂1 − β̂2xi)2.

It might be plausible to choose the β̂1 and β̂2 which minimize the sum of squared

residuals, i.e., S (β̂1, β̂2).

This method is called the ordinary least squares estimation (最小二乗法，OLS).
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To minimize S (β̂1, β̂2) with respect to β̂1 and β̂2, we set the partial derivatives equal

to zero:

∂S (β̂1, β̂2)
∂β̂1

= −2
n∑

i=1

(yi − β̂1 − β̂2xi) = 0,

∂S (β̂1, β̂2)
∂β̂2

= −2
n∑

i=1

xi(yi − β̂1 − β̂2xi) = 0.

The second order condition for minimization is:
( ∂2S (β̂1,β̂2)

∂β̂2
1

∂2S (β̂1,β̂2)
∂β̂1∂β̂2

∂2S (β̂1,β̂2)
∂β̂2∂β̂1

∂2S (β̂1,β̂2)
∂β̂2

2

)
=

( 2n 2
∑n

i=1 xi

2
∑n

i=1 xi 2
∑n

i=1 x2
i

)

should be a positive definite matrix.

The diagonal elements 2n and 2
∑n

i=1 x2
i are positive.

The determinant:
∣∣∣∣∣∣

2n 2
∑n

i=1 xi

2
∑n

i=1 xi 2
∑n

i=1 x2
i

∣∣∣∣∣∣ = 4n
n∑

i=1

x2
i − 4(

n∑

i=1

xi)2 = 4n
n∑

i=1

(xi − x)2
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is positive. =⇒ The second-order condition is satisfied.

The first two equations yield the following two equations:

y = β̂1 + β̂2x, (5)
n∑

i=1

xiyi = nxβ̂1 + β̂2

n∑

i=1

x2
i , (6)

where y =
1
n

n∑

i=1

yi and x =
1
n

n∑

i=1

xi.

Multiplying (5) by nx and subtracting (6), we can derive β̂2 as follows:

β̂2 =

∑n
i=1 xiyi − nxy

∑n
i=1 x2

i − nx2 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 . (7)

From (5), β̂1 is directly obtained as follows:

β̂1 = y − β̂2x. (8)
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When the observed values are taken for yi and xi for i = 1, 2, · · · , n, we say that β̂1

and β̂2 are called the ordinary least squares estimates (or simply the least squares

estimates,最小二乗推定値) of β1 and β2.

When yi for i = 1, 2, · · · , n are regarded as the random sample, we say that β̂1 and β̂2

are called the ordinary least squares estimators (or the least squares estimators,

最小二乗推定量) of β1 and β2.

1.3 Properties of Least Squares Estimator

Equation (7) is rewritten as:

β̂2 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 =

∑n
i=1(xi − x)yi∑n
i=1(xi − x)2 −

y
∑n

i=1(xi − x)∑n
i=1(xi − x)2

=

n∑

i=1

xi − x∑n
i=1(xi − x)2 yi =

n∑

i=1

ωiyi. (9)
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In the third equality,
n∑

i=1

(xi − x) = 0 is utilized because of x =
1
n

n∑

i=1

xi.

In the fourth equality, ωi is defined as: ωi =
xi − x∑n

i=1(xi − x)2 .

ωi is nonstochastic because xi is assumed to be nonstochastic.

ωi has the following properties:

n∑

i=1

ωi =

n∑

i=1

xi − x∑n
i=1(xi − x)2 =

∑n
i=1(xi − x)∑n

i=1(xi − x)2 = 0, (10)

n∑

i=1

ωixi =

n∑

i=1

ωi(xi − x) =

∑n
i=1(xi − x)2

∑n
i=1(xi − x)2 = 1, (11)

n∑

i=1

ω2
i =

n∑

i=1

(
xi − x∑n

i=1(xi − x)2

)2

=

∑n
i=1(xi − x)2

(∑n
i=1(xi − x)2

)2 =
1∑n

i=1(xi − x)2 . (12)

The first equality of (11) comes from (10).
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From now on, we focus only on β̂2, because usually β2 is more important than β1 in

the regression model (1).

In order to obtain the properties of the least squares estimator β̂2, we rewrite (9) as:

β̂2 =

n∑

i=1

ωiyi =

n∑

i=1

ωi(β1 + β2xi + ui)

= β1

n∑

i=1

ωi + β2

n∑

i=1

ωixi +

n∑

i=1

ωiui = β2 +

n∑

i=1

ωiui. (13)

In the fourth equality of (13), (10) and (11) are utilized.
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[Review] Random Variables:

Let X1, X2, · · ·, Xn be n random variavles, which are mutually independently and

identically distributed.

mutually independent =⇒ f (xi, x j) = fi(xi) f j(x j) for i , j.

f (xi, x j) denotes a joint distribution of Xi and X j.

fi(x) indicates a marginal distribution of Xi.

identical =⇒ fi(x) = f j(x) for i , j.

[End of Review]
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[Review] Mean and Variance:

Let X and Y be random variables (continuous type), which are independently dis-

tributed.

Definition and Formulas:

• E(g(X)) =

∫
g(x) f (x)dx for a function g(·) and a density function f (·).

• V(X) = E((X − µ)2) =

∫
(x − µ)2 f (x)dx for µ = E(X).

• E(aX + b) = aE(X) + b and V(aX + b) = V(aX) = a2V(X) for constant a and b.

• E(X ± Y) = E(X) ± E(Y) and V(X ± Y) = V(X) + V(Y).

[End of Review]
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Mean and Variance of β̂2: u1, u2, · · ·, un are assumed to be mutually indepen-

dently and identically distributed with mean zero and variance σ2, but they are not

necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance

but the normality assumption is required to test a hypothesis.

From (13), the expectation of β̂2 is derived as follows:

E(β̂2) = E(β2 +

n∑

i=1

ωiui) = β2 + E(
n∑

i=1

ωiui) = β2 +

n∑

i=1

ωiE(ui) = β2. (14)

It is shown from (14) that the ordinary least squares estimator β̂2 is an unbiased

estimator of β2.

From (13), the variance of β̂2 is computed as:

V(β̂2) = V(β2 +

n∑

i=1

ωiui) = V(
n∑

i=1

ωiui) =

n∑

i=1

V(ωiui) =

n∑

i=1

ω2
i V(ui)
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= σ2
n∑

i=1

ω2
i =

σ2

∑n
i=1(xi − x)2 . (15)

The third equality holds because u1, u2, · · ·, un are mutually independent.

The last equality comes from (12).

Thus, E(β̂2) and V(β̂2) are given by (14) and (15).
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