Econometrics I
(Thur., 8:50-10:20)

Room#4 (0O 0O0OO)

e The prerequisite of this class is Basic Statistics (U U [J [J ) (by Prof. Fukushige,
Tue., 16:20-17:50, this semester) and Econometrics (J O 0 0O O 0O O O O ) (under-
graduate level, next semester, U OO O UOOUOO O OOOOO).

e The class of Special Lectures in Economics (Statistical Analysis), 0 0 0 [
0000000 (by Prof. Fukushige, Tue., 14:40-16:10, this semester) should be

registered.



TA Session: — (No TA Session in April)

TAs: Mr. Hiroki Kato (L 0 O 0)
vge008kh [at] student.econ.osaka-u.ac.jp

Mr. Ang Lu (0 [0)
lvangl2 [at] hotmail.com

Fri., 13:00 - 14:30
Room #2722

Content: Basic Statistics, Matrix Algebra, and etc.
TAs will answer questions about homeworks, too.



1 Regression Analysis ([J [ [J [1 ) — Review

1.1 Setup of the Model

When (x1,y1), (x2,¥2), -+, (x,,y,) are available, suppose that there is a linear rela-

tionship between y and x, i.e.,

Yi =1+ Baxi + u;, (1)
fori=1,2,---,n. x; and y; denote the ith observations.
— Single (or simple) regression model (I 0 [0 0 00 0)

y; is called the dependent variable (J [J [J [J ) or the explained variable (CJ [J (J [
(0), while x; is known as the independent variable (I [J [ (I ) or the explanatory

(or explaining) variable (O O O ).



B1 = Intercept (IJ (1), B> = Slope (0 )
1 and B, are unknown parameters ([ U 0 0 OO O [OJ) to be estimated.
1 and B, are called the regression coefficients ([J [J [J [1).

u; 1s the unobserved error term (I O [ ) assumed to be a random variable with mean

zero and variance o2.

o is also a parameter to be estimated.

x; is assumed to be nonstochastic ([J [J [J [ ), but y; is stochastic (J (I [J ) because

y; depends on the error u;.

The error terms uy, u, - - -, u, are assumed to be mutually independently and identi-

cally distributed, which is called iid. @—  discussed later.

It is assumed that u; has a distribution with mean zero, i.e., E(x;) = 0 is assumed.
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Taking the expectation on both sides of (1), the expectation of y; is represented as:

E(y) = EB1 + Bax; + ;) = By + Box; + E(u;)
=B + Baxi, (2)

fori=1,2,---,n. Using E(y;) we can rewrite (1) as y; = E(y;) + u;.
(2) represents the true regression line.
Let 3, and 3, be estimates of 8, and ..
Replacing 8; and 3, by 3, and 3,, (1) turns out to be:
Yi = Bi + Boxi + e, (3)

fori=1,2,---,n, where ¢; is called the residual (LI 0 ).

The residual e; is taken as the experimental value (or realization) of u;.
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We define J; as follows:
yi = ,él +B2xi, 4)

fori=1,2,---,n, which is interpreted as the predicted value (O [J [0 ) of y;.

(4) indicates the estimated regression line, which is different from (2).

Moreover, using ¥; we can rewrite (3) as y; = J; + e;.

(2) and (4) are displayed in Figure 1.

Consider the case of n = 6 for simplicity. % indicates the observed data series.

The true regression line (2) is represented by the solid line, while the estimated re-

gression line (4) is drawn with the dotted line.

Based on the observed data, 8; and 3, are estimated as: 3, and j3..

6



Figure 1. True and Estimated Regression Lines ([J (1 [1 [ )

(xi, yi)

Distributions Res;dual
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In the next section, we consider how to obtain the estimates of 8 and 3, i.e., 81 and

A

pBa.



1.2 Ordinary Least Squares Estimation

Suppose that (x1, y1), (x2,2), - - (X, y,) are available.
For the regression model (1), we consider estimating 8, and f3,.
Replacing 8, and S, by their estimates ﬁl and ,32, remember that the residual ¢; is
given by:
e =Yi—Yi=Yi —,81 —,Bzxi.
The sum of squared residuals is defined as follows:

5(31,,32) = Z 6? = Z()’i —,31 _Bin)z-
i=1 i=1
It might be plausible to choose the 3, and 3, which minimize the sum of squared
residuals, i.e., S(ﬁ] ,Bz).
This method is called the ordinary least squares estimation (I OO 0 00 [0 [0 OLS).



To minimize S (B, 3,) with respect to 8, and 3,, we set the partial derivatives equal

to zero:
aS (Bl’ﬁZ)
-2 =
7 Z( vi =B = Baxi) =
aS (ﬁbﬁZ)
-2 =
8,82 Z xl(yl ﬁl ﬁth)

The second order condition for minimization is:

PSBipy  PSBip)

( Pt Biopy | _ 2n 230 X

PSBipy  PSBip | T I \
9h.0p1 B2 2 Zizl xi 2 Zi:] Xi

should be a positive definite matrix.

The diagonal elements 2n and 2 Y. x7 are positive.
The determinant:

2n 2 X Xi

‘22?:1 X 2XL %

n

=4n Z x? — 4(2”: x;)? = 4n Z":(Xi -%)
i=1 i=1

i=1




is positive. =  The second-order condition is satisfied.

The first two equations yield the following two equations:
y =B +5%,
Z Xy = nxpy + Ba Z X7,
i=1 i=1

n

where y = %iy,-andiz %in.

i=1 i=1

Multiplying (5) by nx and subtracting (6), we can derive 3, as follows:

Y Xy —nxy N =) =)

B> =

Y X — e Xm(-%)?
From (5), ,@1 is directly obtained as follows:

A

Bi =5 - pox.
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When the observed values are taken for y; and x; for i = 1,2,---,n, we say that 3,
and j3, are called the ordinary least squares estimates (or simply the least squares

estimates, [J [J [0 00 O 0 O ) of 5; and ;.

When y; fori = 1,2, -- -, n are regarded as the random sample, we say that 3, and 3,
are called the ordinary least squares estimators (or the least squares estimators,

00000O00)of B and Bs.

1.3 Properties of Least Squares Estimator

Equation (7) is rewritten as:

B _ er'l:1(xi —J_C)()’i —i) _ Z?zl(xi —%)yi _ iZ?:l(xi -X)
? Z” 1<xl~ —z)z Z” (6 —X? Y (-
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n 1 n
In the third equality, ) (x; —X) = 0 is utilized because of x = — X;.
Xi — x
Y (=%

w; 1s nonstochastic because x; is assumed to be nonstochastic.

In the fourth equality, w; is defined as: w; =

w; has the following properties:
s (X — %)
w; = = = — O,
Z Z 2 1(xz - X)2 Y (i = %)?

- : = 0P
wiXx; = wixi—x)=5———5 =1,

n n _ 2 " —
2= E i~ X 2 —x)7 1
4= 2lswi) T (he-w) o

S (x - %)

i=1 i=1

The first equality of (11) comes from (10).
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From now on, we focus only on /3, because usually 3, is more important than 8, in
the regression model (1).

In order to obtain the properties of the least squares estimator 3,, we rewrite (9) as:

ﬁZ = Z Wy = Z wi(B1 + Baxi + u;)

—ﬁlzw,+522wx,+2wu, ,32"‘260% (13)

In the fourth equality of (13), (10) and (11) are utilized.
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[Review] Random Variables:

Let X;, X5, ---, X, be n random variavles, which are mutually independently and

identically distributed.

mutually independent — f(x;, x;) = fi(x;)fj(x;) fori # j.
f(xi, x;) denotes a joint distribution of X; and X .
fi(x) indicates a marginal distribution of X;.

identical = fi(x) = f;(x) fori # j.

[End of Review]
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[Review] Mean and Variance:
Let X and Y be random variables (continuous type), which are independently dis-

tributed.

Definition and Formulas:

e E(g(X)) = f g(x)f(x)dx for a function g(-) and a density function f(-).

o V(X) = E(X - pP) = f (x — P f(0dx for pu = E(X).

e E(aX +b) =aE(X) +b and V(aX + b) = V(aX) = a*V(X) for constant a and b.
e EXxY)=EX)+E(Y) and V(X £ Y) = V(X) + V(Y).

[End of Review]
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Mean and Variance of ,32: u,, U, -+, u, are assumed to be mutually indepen-
dently and identically distributed with mean zero and variance o, but they are not
necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance
but the normality assumption is required to test a hypothesis.

From (13), the expectation of Bz is derived as follows:
E(B) = (B + ) witt) = o+ B w) = o+ ) wBu) = pr. (14)
i=1 i=1 i=1

It is shown from (14) that the ordinary least squares estimator j3, is an unbiased
estimator of 3,.

From (13), the variance of 3, is computed as:
VB =VBr+ D wu) =V wu) = Y Viwu) = Y V()
i=1 i=1 i=1 i=1
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St
=0 w, = —-.
" l Z?:l(-xi _x)2

The third equality holds because uy, u,, - - -, u, are mutually independent.

The last equality comes from (12).
Thus, E(Bz) and V(Bz) are given by (14) and (15).
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