Exact Distribution of $\hat{\boldsymbol{\beta}}_{\mathbf{2}}$: We have shown asymptotic normality of $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$, which is one of the large sample properties.
Now, we discuss the small sample properties of $\hat{\beta}_{2}$.
In order to obtain the distribution of $\hat{\beta}_{2}$ in small sample, the distribution of the error term has to be assumed.

Therefore, the extra assumption is that $u_{i} \sim N\left(0, \sigma^{2}\right)$.
Writing (13), again, $\hat{\beta}_{2}$ is represented as:

$$
\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}
$$

First, we obtain the distribution of the second term in the above equation.

［Review］Content of Special Lectures in Economics（Statistical Analysis）

Note that the moment－generating function（積率母関数，MGF）is given by $M(\theta) \equiv$ $\mathrm{E}(\exp (\theta X))=\exp \left(\mu \theta+\frac{1}{2} \sigma^{2} \theta^{2}\right)$ when $X \sim N\left(\mu, \sigma^{2}\right)$ ．
$X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently distributed as $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$ for $i=$ $1,2, \cdots, n$ ．

MGF of X_{i} is $M_{i}(\theta) \equiv \mathrm{E}\left(\exp \left(\theta X_{i}\right)\right)=\exp \left(\mu_{i} \theta+\frac{1}{2} \sigma_{i}^{2} \theta^{2}\right)$ ．
Consider the distribution of $Y=\sum_{i=1}^{n}\left(a_{i}+b_{i} X_{i}\right)$ ，where a_{i} and b_{i} are constant．

$$
\begin{aligned}
M_{y}(\theta) & \equiv \mathrm{E}(\exp (\theta Y))=\mathrm{E}\left(\exp \left(\theta \sum_{i=1}^{n}\left(a_{i}+b_{i} X_{i}\right)\right)\right) \\
& =\prod_{i=1}^{n} \exp \left(\theta a_{i}\right) \mathrm{E}\left(\exp \left(\theta b_{i} X_{i}\right)\right)=\prod_{i=1}^{n} \exp \left(\theta a_{i}\right) M_{i}\left(\theta b_{i}\right) \\
& =\prod_{i=1}^{n} \exp \left(\theta a_{i}\right) \exp \left(\mu_{i} \theta b_{i}+\frac{1}{2} \sigma_{i}^{2}\left(\theta b_{i}\right)^{2}\right)=\exp \left(\theta \sum_{i=1}^{n}\left(a_{i}+b_{i} \mu_{i}\right)+\frac{1}{2} \theta^{2} \sum_{i=1}^{n} b_{i}^{2} \sigma_{i}^{2}\right),
\end{aligned}
$$

which implies that $Y \sim N\left(\sum_{i=1}^{n}\left(a_{i}+b_{i} \mu_{i}\right), \sum_{i=1}^{n} b_{i}^{2} \sigma_{i}^{2}\right)$ ．
［End of Review］

Substitute $a_{i}=0, \mu_{i}=0, b_{i}=\omega_{i}$ and $\sigma_{i}^{2}=\sigma^{2}$.

Then, using the moment-generating function, $\sum_{i=1}^{n} \omega_{i} u_{i}$ is distributed as:

$$
\sum_{i=1}^{n} \omega_{i} u_{i} \sim N\left(0, \sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}\right)
$$

Therefore, $\hat{\beta}_{2}$ is distributed as:

$$
\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i} \sim N\left(\beta_{2}, \sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}\right),
$$

or equivalently,

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma \sqrt{\sum_{i=1}^{n} \omega_{i}^{2}}}=\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \sim N(0,1),
$$

for any n.

[Review 1] t Distribution:

$Z \sim N(0,1), V \sim \chi^{2}(k)$, and Z is independent of V. Then, $\frac{Z}{\sqrt{V / k}} \sim t(k)$.
[End of Review 1]

[Review 2] t Distribution:

Suppose that $X_{1}, X_{2} \cdots, X_{n}$ are mutually independently, identically and normally distributed with mean μ and variance σ^{2}.
$\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$, i.e., $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$.
Define $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$, which is an unbiased estimator of σ^{2}.
It is known that $\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$ and \bar{X} is independesnt of S^{2}. (The proof is skipped.)

Then, we obtain $\frac{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}} /(n-1)}}=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$.
As a result, replacing σ^{2} by $S^{2}, \frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$.
[End of Review 2]

Back to OLS：

Replacing σ^{2} by its estimator s^{2} defined in（17），it is known that we have：

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \sim t(n-2),
$$

where $t(n-2)$ denotes t distribution with $n-2$ degrees of freedom．

Thus，under normality assumption on the error term u_{i} ，the $t(n-2)$ distribution is used for the confidence interval and the testing hypothesis in small sample．

Or，taking the square on both sides，

$$
\left(\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right)^{2} \sim F(1, n-2)
$$

which will be proved later．
Before going to multiple regression model（重回帰モデル），

2 Some Formulas of Matrix Algebra

1．Let $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 k} \\ a_{21} & a_{22} & \cdots & a_{2 k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l 1} & a_{l 2} & \cdots & a_{l k}\end{array}\right)=\left[a_{i j}\right]$ ，
which is a $l \times k$ matrix，where $a_{i j}$ denotes i th row and j th column of A ．
The transposed matrix（転置行列）of A ，denoted by A^{\prime} ，is defined as：
$A^{\prime}=\left(\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{l 1} \\ a_{12} & a_{22} & \cdots & a_{l 2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1 k} & a_{2 k} & \cdots & a_{l k}\end{array}\right)=\left[a_{j i}\right]$,
where the i th row of A^{\prime} is the i th column of A ．
2. $(A x)^{\prime}=x^{\prime} A^{\prime}$,
where A and x are a $l \times k$ matrix and a $k \times 1$ vector, respectively.
3. $a^{\prime}=a$,
where a denotes a scalar.
4. $\frac{\partial a^{\prime} x}{\partial x}=a$,
where a and x are $k \times 1$ vectors.
5. If A is symmetric, $A=A^{\prime}$.
6. $\frac{\partial x^{\prime} A x}{\partial x}=\left(A+A^{\prime}\right) x$,
where A and x are a $k \times k$ matrix and a $k \times 1$ vector, respectively.
Especially, when A is symmetric,
$\frac{\partial x^{\prime} A x}{\partial x}=2 A x$.
7．Let A and B be $k \times k$ matrices，and I_{k} be a $k \times k$ identity matrix（単位行列） （one in the diagonal elements and zero in the other elements）．

When $A B=I_{k}, B$ is called the inverse matrix（逆行列）of A ，denoted by $B=A^{-1}$ ．

That is，$A A^{-1}=A^{-1} A=I_{k}$ ．
8．Let A be a $k \times k$ matrix and x be a $k \times 1$ vector．
If A is a positive definite matrix（正値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x>0 .
$$

If A is a positive semidefinite matrix（非負値定符号行列），for any x except
for $x=0$ we have：

$$
x^{\prime} A x \geq 0
$$

If A is a negative definite matrix（負値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x<0 .
$$

If A is a negative semidefinite matrix（非正値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x \leq 0 .
$$

Trace，Rank and etc．：$\quad A: k \times k, \quad B: n \times k, \quad C: k \times n$.
1．The trace（トレース）of A is： $\operatorname{tr}(A)=\sum_{i=1}^{k} a_{i i}$ ，where $A=\left[a_{i j}\right]$ ．

2．The rank（ランク，階数）of A is the maximum number of linearly independent column（or row）vectors of A ，which is denoted by $\operatorname{rank}(A)$ ．

3．If A is an idempotent matrix（べき等行列），$A=A^{2}$ 。

4．If A is an idempotent and symmetric matrix，$A=A^{2}=A^{\prime} A$ ．

5．A is idempotent if and only if the eigen values of A consist of 1 and 0 ．

6．If A is idempotent， $\operatorname{rank}(A)=\operatorname{tr}(A)$ ．

7． $\operatorname{tr}(B C)=\operatorname{tr}(C B)$

Distributions in Matrix Form：

1．Let X, μ and Σ be $k \times 1, k \times 1$ and $k \times k$ matrices．

When $X \sim N(\mu, \Sigma)$, the density function of X is given by:

$$
f(x)=\frac{1}{(2 \pi)^{k / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right) .
$$

$\mathrm{E}(X)=\mu$ and $\mathrm{V}(X)=\mathrm{E}\left((X-\mu)(X-\mu)^{\prime}\right)=\Sigma$
The moment-generating function: $\phi(\theta)=\mathrm{E}\left(\exp \left(\theta^{\prime} X\right)\right)=\exp \left(\theta^{\prime} \mu+\frac{1}{2} \theta^{\prime} \Sigma \theta\right)$
${ }^{(*)}$ In the univariate case, when $X \sim N\left(\mu, \sigma^{2}\right)$, the density function of X is:

$$
f(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

2. If $X \sim N(\mu, \Sigma)$, then $(X-\mu)^{\prime} \Sigma^{-1}(X-\mu) \sim \chi^{2}(k)$.

Note that $\quad X^{\prime} X \sim \chi^{2}(k)$ when $X \sim N\left(0, I_{k}\right)$.
3. $X: n \times 1$,
$Y: m \times 1$,
$X \sim N\left(\mu_{x}, \Sigma_{x}\right), \quad Y \sim N\left(\mu_{y}, \Sigma_{y}\right)$
X is independent of Y, i.e., $\mathrm{E}\left(\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)^{\prime}\right)=0$ in the case of normal random variables.

$$
\frac{\left(X-\mu_{x}\right)^{\prime} \Sigma_{x}^{-1}\left(X-\mu_{x}\right) / n}{\left(Y-\mu_{y}\right)^{\prime} \Sigma_{y}^{-1}\left(Y-\mu_{y}\right) / m} \sim F(n, m)
$$

4. If $X \sim N\left(0, \sigma^{2} I_{n}\right)$ and A is a symmetric idempotent $n \times n$ matrix of rank G, then $X^{\prime} A X / \sigma^{2} \sim \chi^{2}(G)$.

Note that $X^{\prime} A X=(A X)^{\prime}(A X)$ and $\operatorname{rank}(A)=\operatorname{tr}(A)$ because A is idempotent.
5. If $X \sim N\left(0, \sigma^{2} I_{n}\right), A$ and B are symmetric idempotent $n \times n$ matrices of rank G and K, and $A B=0$, then

$$
\frac{X^{\prime} A X}{G \sigma^{2}} / \frac{X^{\prime} B X}{K \sigma^{2}}=\frac{X^{\prime} A X / G}{X^{\prime} B X / K} \sim F(G, K) .
$$

