Testing Linear Restrictions (F Distribution):

1. If $u \sim N\left(0, \sigma^{2} I_{n}\right)$, then $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$.

Consider testing the hypothesis $H_{0}: R \beta=r$.
$R: G \times k, \quad \operatorname{rank}(R)=G \leq k$.
$R \hat{\beta} \sim N\left(R \beta, \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)$.
Therefore, $\quad \frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)}{\sigma^{2}} \sim \chi^{2}(G)$.
Note that $R \beta=r$.
(a) When $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$, the mean of $R \hat{\beta}$ is:

$$
\mathrm{E}(R \hat{\beta})=R \mathrm{E}(\hat{\beta})=R \beta
$$

(b) When $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$, the variance of $R \hat{\beta}$ is:

$$
\begin{aligned}
\mathrm{V}(R \hat{\beta}) & =\mathrm{E}\left((R \hat{\beta}-R \beta)(R \hat{\beta}-R \beta)^{\prime}\right)=\mathrm{E}\left(R(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime} R^{\prime}\right) \\
& =R \mathrm{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right) R^{\prime}=R \mathrm{~V}(\hat{\beta}) R^{\prime}=\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime} .
\end{aligned}
$$

2. We know that $\frac{(n-k) s^{2}}{\sigma^{2}}=\frac{e^{\prime} e}{\sigma^{2}}=\frac{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})}{\sigma^{2}} \sim \chi^{2}(n-k)$.
3. Under normality assumption on $u, \hat{\beta}$ is independent of e.
4. Therefore, we have the following distribution:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) / G}{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) /(n-k)} \sim F(G, n-k)
$$

5. Some Examples:
(a) t Test:

The case of $G=1, r=0$ and $R=(0, \cdots, 1, \cdots, 0)$ (the i th element of R is one and the other elements are zero):

The test of $H_{0}: \beta_{i}=0$ is given by:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) / G}{s^{2}}=\frac{\hat{\beta}_{i}^{2}}{s^{2} a_{i i}} \sim F(1, n-k),
$$

where $s^{2}=e^{\prime} e /(n-k), R \hat{\beta}=\hat{\beta}_{i}$ and

$$
a_{i i}=R\left(X^{\prime} X\right)^{-1} R^{\prime}=\text { the } i \text { row and } i \text { th column of }\left(X^{\prime} X\right)^{-1} .
$$

*) Recall that $Y \sim F(1, m)$ when $X \sim t(m)$ and $Y=X^{2}$.

Therefore, the test of $H_{0}: \beta_{i}=0$ is given by:

$$
\frac{\hat{\beta}_{i}}{s \sqrt{a_{i i}}} \sim t(n-k) .
$$

(b) Test of structural change (Part 1):

$$
y_{i}= \begin{cases}x_{i} \beta_{1}+u_{i}, & i=1,2, \cdots, m \\ x_{i} \beta_{2}+u_{i}, & i=m+1, m+2, \cdots, n\end{cases}
$$

Assume that $u_{i} \sim N\left(0, \sigma^{2}\right)$.
In a matrix form,

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m} \\
y_{m+1} \\
y_{m+2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{cc}
x_{1} & 0 \\
x_{2} & 0 \\
\vdots & \vdots \\
x_{m} & 0 \\
0 & x_{m+1} \\
0 & x_{m+2} \\
\vdots & \vdots \\
0 & x_{n}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m} \\
u_{m+1} \\
u_{m+2} \\
\vdots \\
u_{n}
\end{array}\right)
$$

Moreover, rewriting,

$$
\binom{Y_{1}}{Y_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}+u
$$

Again, rewriting,

$$
Y=X \beta+u
$$

The null hypothesis is $H_{0}: \beta_{1}=\beta_{2}$.
Apply the F test, using $R=\left(I_{k}-I_{k}\right)$ and $r=0$.
In this case, $G=\operatorname{rank}(R)=k$ and β is a $2 k \times 1$ vector.
The distribution is $F(k, n-2 k)$.
(c) The hypothesis in which sum of the 1 st and 2 nd coefficients is equal to one:
$R=(1,1,0, \cdots, 0), r=1$

In this case，$G=\operatorname{rank}(R)=1$
The distribution of the test statistic is $F(1, n-k)$ ．
（d）Testing seasonality：
In the case of quarterly data（四半期データ），the regression model is：

$$
y=\alpha+\alpha_{1} D_{1}+\alpha_{2} D_{2}+\alpha_{3} D_{3}+X \beta_{0}+u
$$

$D_{j}=1$ in the j th quarter and 0 otherwise，i．e．，$D_{j}, j=1,2,3$ ，are sea－ sonal dummy variables．

Testing seasonality $\Longrightarrow H_{0}: \alpha_{1}=\alpha_{2}=\alpha_{3}=0$

$$
\beta=\left(\begin{array}{c}
\alpha \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\beta_{0}
\end{array}\right), \quad R=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0
\end{array}\right), \quad r=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

In this case，$G=\operatorname{rank}(R)=3$ ，and β is a $k \times 1$ vector．
The distribution of the test statistic is $F(3, n-k)$ ．
（e）Cobb－Douglas Production Function：
Let Q_{i}, K_{i} and L_{i} be production，capital stock and labor．
We estimate the following production function：

$$
\log \left(Q_{i}\right)=\beta_{1}+\beta_{2} \log \left(K_{i}\right)+\beta_{3} \log \left(L_{i}\right)+u_{i} .
$$

We test a linear homogeneous（一次同次）production function．
The null and alternative hypotheses are：

$$
\begin{aligned}
& H_{0}: \beta_{2}+\beta_{3}=1, \\
& H_{1}: \beta_{2}+\beta_{3} \neq 1 .
\end{aligned}
$$

Then，set as follows：

$$
R=\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right), \quad r=1 .
$$

(f) Test of structural change (Part 2):

Test the structural change between time periods m and $m+1$.
In the case where both the constant term and the slope are changed, the regression model is as follows:

$$
y_{i}=\alpha+\beta x_{i}+\gamma d_{i}+\delta d_{i} x_{i}+u_{i},
$$

where

$$
d_{i}= \begin{cases}0, & \text { for } i=1,2, \cdots, m \\ 1, & \text { for } i=m+1, m+2, \cdots, n\end{cases}
$$

We consider testing the structural change at time $m+1$.
The null and alternative hypotheses are as follows:

$$
\begin{aligned}
& H_{0}: \gamma=\delta=0, \\
& H_{1}: \gamma \neq 0, \text { or, } \delta \neq 0 .
\end{aligned}
$$

Then, set as follows:

$$
R=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad r=\binom{0}{0}
$$

(g) Multiple regression model:

Consider the case of two explanatory variables:

$$
y_{i}=\alpha+\beta x_{i}+\gamma z_{i}+u_{i} .
$$

We want to test the hypothesis that neither x_{i} nor z_{i} depends on y_{i}.
In this case, the null and alternative hypotheses are as follows:

$$
\begin{aligned}
& H_{0}: \beta=\gamma=0, \\
& H_{1}: \beta \neq 0, \text { or, } \gamma \neq 0 .
\end{aligned}
$$

Then, set as follows:

$$
R=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad r=\binom{0}{0}
$$

Coefficient of Determination $\boldsymbol{R}^{\mathbf{2}}$ and \boldsymbol{F} distribution:

- The regression model:

$$
y_{i}=x_{i} \beta+u_{i}=\beta_{1}+x_{2 i} \beta_{2}+u_{i}
$$

where

$$
\begin{gathered}
x_{i}=\left(\begin{array}{ll}
1 & x_{2 i}
\end{array}\right), \quad \beta=\binom{\beta_{1}}{\beta_{2}}, \\
x_{i}: 1 \times k, \quad x_{2 i}: 1 \times(k-1), \quad \beta: k \times 1, \quad \beta_{2}:(k-1) \times 1
\end{gathered}
$$

Define:

$$
X_{2}=\left(\begin{array}{c}
x_{21} \\
x_{22} \\
\vdots \\
x_{2 n}
\end{array}\right)
$$

Then,

$$
y=X \beta+u=\left(\begin{array}{ll}
i & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}+u=i \beta_{1}+X_{2} \beta_{2}+u
$$

where the first column of X corresponds to a constant term, i.e.,

$$
X=\left(\begin{array}{ll}
i & X_{2}
\end{array}\right), \quad i=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
$$

Consider testing $H_{0}: \beta_{2}=0$.
The F distribution is set as follows:

$$
R=\left(\begin{array}{ll}
0 & I_{k-1}
\end{array}\right), \quad r=0
$$

where R is a $(k-1) \times k$ matrix and r is a $(k-1) \times 1$ vector.

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) /(k-1)}{e^{\prime} e /(n-k)} \sim F(k-1, n-k)
$$

We are going to show:

$$
(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)=\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2}
$$

where $M=I_{n}-\frac{1}{n} i i^{\prime}$.
Note that M is symmetric and idempotent, i.e., $M^{\prime} M=M$.

$$
\left(\begin{array}{c}
y_{1}-\bar{y} \\
y_{2}-\bar{y} \\
\vdots \\
y_{n}-\bar{y}
\end{array}\right)=M y
$$

$R\left(X^{\prime} X\right)^{-1} R^{\prime}$ is given by:

$$
\begin{aligned}
R\left(X^{\prime} X\right)^{-1} R^{\prime} & \left.=\left(\begin{array}{ll}
0 & I_{k-1}
\end{array}\right)\binom{i^{\prime}}{X_{2}^{\prime}}\left(\begin{array}{ll}
i & X_{2}
\end{array}\right)\right)^{-1}\binom{0}{I_{k-1}} \\
& =\left(\begin{array}{ll}
0 & I_{k-1}
\end{array}\right)\left(\begin{array}{cc}
i^{\prime} i & i^{\prime} X_{2} \\
X_{2}^{\prime} i & X_{2}^{\prime} X_{2}
\end{array}\right)^{-1}\binom{0}{I_{k-1}}
\end{aligned}
$$

[Review] The inverse of a partitioned matrix:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} and A_{22} are square nonsingular matrices.

$$
A^{-1}=\left(\begin{array}{cc}
B_{11} & -B_{11} A_{12} A_{22}^{-1} \\
-A_{22}^{-1} A_{21} B_{11} & A_{22}^{-1}+A_{22}^{-1} A_{21} B_{11} A_{12} A_{22}^{-1}
\end{array}\right)
$$

where $B_{11}=\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1}$, or alternatively,

$$
A^{-1}=\left(\begin{array}{cc}
A_{11}^{-1}+A_{11}^{-1} A_{12} B_{22} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12} B_{22} \\
-B_{22} A_{21} A_{11}^{-1} & B_{22}
\end{array}\right),
$$

where $B_{22}=\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1}$.
[End of Review]

Go back to the F distribution.

$$
\begin{aligned}
\left(\begin{array}{cc}
i^{\prime} i & i^{\prime} X_{2} \\
X_{2}^{\prime} i & X_{2}^{\prime} X_{2}
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
\cdot & \cdots \\
\vdots & \left(X_{2}^{\prime} X_{2}-X_{2}^{\prime} i\left(i^{\prime} i\right)^{-1} i^{\prime} X_{2}\right)^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cdot & \cdots \\
\vdots & \left(X_{2}^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) X_{2}\right)^{-1}
\end{array}\right)=\left(\begin{array}{cc}
\cdot & \cdots \\
\vdots & \left(X_{2}^{\prime} M X_{2}\right)^{-1}
\end{array}\right)
\end{aligned}
$$

Therefore, we obtain:

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & I_{k-1}
\end{array}\right)\left(\begin{array}{cc}
i^{\prime} i & i^{\prime} X_{2} \\
X_{2}^{\prime} i & X_{2}^{\prime} X_{2}
\end{array}\right)^{-1}\binom{0}{I_{k-1}} \\
& \quad=\left(\begin{array}{ll}
0 & I_{k-1}
\end{array}\right)\left(\begin{array}{cc}
\cdot & \cdots \\
\vdots & \left(X_{2}^{\prime} M X_{2}\right)^{-1}
\end{array}\right)\binom{0}{I_{k-1}}=\left(X_{2}^{\prime} M X_{2}\right)^{-1}
\end{aligned}
$$

Thus, under $H_{0}: \beta_{2}=0$, we obtain the following result:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) /(k-1)}{e^{\prime} e /(n-k)}=\frac{\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2} /(k-1)}{e^{\prime} e /(n-k)} \sim F(k-1, n-k) .
$$

- Coefficient of Determination R^{2} :

Define e as $e=y-X \hat{\beta}$. The coefficient of determinant, R^{2}, is

$$
R^{2}=1-\frac{e^{\prime} e}{y^{\prime} M y},
$$

where $M=I_{n}-\frac{1}{n} i i^{\prime}, I_{n}$ is a $n \times n$ identity matrix and i is a $n \times 1$ vector consisting of 1 , i.e., $i=(1,1, \cdots, 1)^{\prime}$.

$$
M e=M y-M X \hat{\beta}
$$

When $X=\left(\begin{array}{ll}i & X_{2}\end{array}\right)$ and $\hat{\beta}=\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}}$,

$$
M e=e,
$$

because $i^{\prime} e=0$, and

$$
M X=M\left(\begin{array}{ll}
i & X_{2}
\end{array}\right)=\left(\begin{array}{ll}
M i & M X_{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & M X_{2}
\end{array}\right),
$$

because $M i=0$.

$$
M X \hat{\beta}=\left(\begin{array}{ll}
0 & M X_{2}
\end{array}\right)\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}}=M X_{2} \hat{\beta}_{2}
$$

Thus,

$$
M y=M X \hat{\beta}+M e \quad \Longrightarrow \quad M y=M X_{2} \hat{\beta}_{2}+e
$$

$y^{\prime} M y$ is given by: $y^{\prime} M y=\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2}+e^{\prime} e$, because $X_{2}^{\prime} e=0$ and $M e=e$.
The coefficient of determinant, R^{2}, is rewritten as:

$$
\begin{gathered}
R^{2}=1-\frac{e^{\prime} e}{y^{\prime} M y} \quad \Longrightarrow \quad e^{\prime} e=\left(1-R^{2}\right) y^{\prime} M y, \\
R^{2}=\frac{y^{\prime} M y-e^{\prime} e}{y^{\prime} M y}=\frac{\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2}}{y^{\prime} M y} \quad \Longrightarrow \quad \hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2}=R^{2} y^{\prime} M y .
\end{gathered}
$$

Therefore,
$\frac{\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2} /(k-1)}{e^{\prime} e /(n-k)}=\frac{R^{2} y^{\prime} M y /(k-1)}{\left(1-R^{2}\right) y^{\prime} M y /(n-k)}=\frac{R^{2} /(k-1)}{\left(1-R^{2}\right) /(n-k)} \sim F(k-1, n-k)$.
Thus, using R^{2}, the null hypothesis $H_{0}: \beta_{2}=0$ is easily tested.

