8.1 Example: Mixed Estimation (Theil and Goldberger Model)
A generalization of the restricted OLS = Stochastic linear restriction:

r=RB+v, E(v) =0 and V(v) = 0¥

y=XB+u, E(u) =0 and V(u) = o*I,
Using a matrix form,

C)=CelC) ()=o) v ()=(5 )

For estimation, we do not need normality assumption.

Applying GLS, we obtain:

(x R')(z i)l(i)]l((x R”(IS i)](i)]

= (XX + R¥R) (Xy + R,

b=
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Mean and Variance of b: b is rewritten as follows:

L, 0\ xyy! I, 0\'/y
oo ol o G for o 310
0 v R 0 v r

I, 0\ /x\\" ju

o+l ofy ) G )

0 v R v

Therefore, the mean and variance are given by:
Eb)=p = b is unbiased.

-1 -1

I, 0 X
V(b):a'z((X’ R’)( ) ( )J
0 ¥ R

= O'Z(X’X + R"P‘IR)_I
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9 Maximum Likelihood Estimation (MLE, [ [1 [])

—> Review

1. The distribution function of {X;}?_, is f(x; 0), where x = (x1, X2, -+, X,).

6 is a vector or matrix of unknown parameters, e.g., 6 = (u, ), where u = E(X;)

and £ = V(X).

Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(-) is defined as L(6; x) = f(x;0).

Note that f(x;0) = []_, f(x;;0) when X;, X5, -+, X,, are mutually indepen-

dently and identically distributed.
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The maximum likelihood estimate (MLE) of 6 is the 0 such that:

max L(6; x). — max log L(6; x).
6 0

Thus, MLE satisfies the following two conditions:

O0log L(6; . .~
(a) % =0. = Solution of 8: 8 = 6(x)
0% log L(6; x) . . . .
(b) % is a negative definite matrix.
2. x = (x1,x,---,X,) are used as the observations (i.e., observed data).
X = (X1,X,,---,X,) denote the random variables associated with the joint

distribution f(x;6) = [T, f(x:;;6).
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3. Replacing x by X, we otain the maximum likelihood estimator (MLE, which

is the same word as the maximum likelihood estimate).

That is, MLE of 6 satisfies the following two conditions:

dlog L(9; X - ..
(a) % —0. = Solutionof6: 8= H(X)
0 log L(6; X
(b) % is a negative definite matrix.

4. Fisher’s information matrix (U OO O 0O 0O 0O 0O O O O) or simply informa-
tion matrix, denoted by /(6), is given by:

0% log L(6; X)
[0) = -E|—————
@ = Ao )
where we have the following equality:
0% log L(6; X) dlog L(6; X) 0log L(6; X) dlog L(6; X)
-E(————)=E =V
e )N e VT )

Note that E(-) and V() are expected with respect to X.
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Proof of the above equality:

f L(9; x)dx =1

Take a derivative with respect to 6.

OL(o:
f ©: 40
00

(We assume that (i) the domain of x does not depend on 6 and (ii) the derivative
0L(0; x)
00

Rewriting the above equation, we obtain:

f 0log L(6; x)
00

exists.)

L(6; x)dx = 0,

1.e.,
E(W) 0.
06
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Again, differentiating the above with respect to 6, we obtain:

& logL(#;x) dlog L(6; x) OL(6; x)
f “ae08 L(6; x)dx + f 50 50 dx

0% log L(6; x) dlog L(6; x) 8 log L(H; x)
= | ——==2""19:
f deoy DA+ f 80 o0
0% log L(6; X) dlog L(6; X) dlog L(6; X)
-E E
(e )+ E—2 Py

L(6; x)dx

)=o0.

Therefore, we can derive the following equality:

0% log L(6; X) dlog L(6; X) dlog L(6; X) dlog L(6; X)
-E|———|=E =V|————=],
06000’ 00 oo 00

Olog L(6; X
where the second equality utilizes E (%) =0.

5. Cramer-Rao Lower Bound (D00 000000 00O)is given by: (1(8))~.

Suppose that an estimator of 6 is given by s(X).
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The expectation of s(X) is:

E(s(X)) = f s(x)L(0; x)dx.

Differentiating the above with respect to 6,

OE(s(X)) oLO;x) , dlog L(6;x)
50 = f s(x)—ae dx = f s(x)—ae L(6; x)dx

_ Cov (s(X), dlog L(6; X))

00

For simplicity, let s(X) and 6 be scalars.

Then,
IE(s(X)\ dlogLG; X)\\* dlog L(6; X)
( o ) —(COV(S(X), T)) =p V(s(X))V(T)
<V (s(X)V (—a log BLH(Q; X)) ,
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where p denotes the correlation coefficient between s(X) and

Cov (S(X), W)

06
dlog L(6’ X))

p:

W\/

Note that |p| < 1.

Therefore, we have the following inequality:

(aE(s<X>) ?

X ) < V(s(X)) V(610g L(6; X)),

00

1.e.,

(aEcs(X)>)2
V(s(X)) =

v (8 log L(#; X))
00
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Especially, when E(s(X)) = 6, i.e., when s(X) is an unbiased estimator of 6, the

numerator of the right-hand side leads to one.

Therefore, we obtain:

1

B 0% log L(6; X)
062

V(s(X)) > = (1))~

Even in the case where s(X) is a vector, the following inequality holds.
V(s(X)) = (1),

where 1(0) is defined as:

0% log L(6; X)
16)= _E( 9000’ )
_E 0log L(6; X) 0log L(6; X) _v dlog L(6; X)
- 90 00’ - 90 '
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The variance of any unbiased estimator of  is larger than or equal to (1(6))~'.
Thus, (1(6))~! results in the lower bound of the variance of any unbiased esti-
mator of 6.

. Asymptotic Normality of MLE:

Let 8 be MLE of 6.
As n goes to infinity, we have the following result:

-1
Vn@ -6 — N[O, 1im(@) ]

n—co\ n

10
where it is assumed that lim (Q) converges.

n—oo\ n

— The proof will be shown later.
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That is, when 7 is large, 6 is approximately distributed as follows:

G~N (9, (1(9))—1) .

Suppose that s(X) = 6.

When n is large, V(s(X)) is approximately equal to (1(9))_].

. Optimization (O O O ):

MLE of 6 results in the following maximization problem:

max log L(6; x).
0

‘We often have the case where the solution of 0 is not derived in closed form.

= Optimization procedure

0= dlog L(6;x) _ dlog L(6"; x) . 8% log L(6"; x)
B 90 B 90 0006’

@—6).
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Solving the above equation with respect to 6, we obtain the following:

0 g P log L(0";x)\ ' 8log L(6"; x)
- 9006’ 9
Replace the variables as follows:

0 SN 9(i+1)

g — 0"

Then, we have:

.\ 7! i).
g+ — g _ (82 log L(Q(),X)) dlog L(G(),x).

0000’ 00
=— Newton-Raphson method (I 0 0O OO0 O0OOO)

0% log L(6%; x) v E (82 log L(67; x)

9090' 000 ), we obtain the following op-

Replacing
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timization algorithm:

gi+h — g _ (E (82 log L(6"; x)))—l 9log LEEP: x)

0006 00
-1 dlog L(6"; x)

=07+ (16")) 0

— Method of Scoring (I 0 O [0)
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