
8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS =⇒ Stochastic linear restriction:

r = Rβ + v, E(v) = 0 and V(v) = σ2Ψ

y = Xβ + u, E(u) = 0 and V(u) = σ2In

Using a matrix form,
( y

r

)
=

( X

R

)
β +

( u

v

)
, E

( u

v

)
=

( 0

0

)
and V

( u

v

)
= σ2

( In 0

0 Ψ

)

For estimation, we do not need normality assumption.

Applying GLS, we obtain:

b =

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)
−1 ( X′ R′ )

( In 0

0 Ψ

)−1 ( y

r

)

=
(
X′X + R′Ψ−1R

)−1(
X′y + R′Ψ−1r

)
.
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Mean and Variance of b: b is rewritten as follows:

b =

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)
−1 ( X′ R′ )

( In 0

0 Ψ

)−1 ( y

r

)

= β +

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)
−1 ( u

v

)

Therefore, the mean and variance are given by:

E(b) = β =⇒ b is unbiased.

V(b) = σ2

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)
−1

= σ2
(
X′X + R′Ψ−1R

)−1
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9 Maximum Likelihood Estimation (MLE,
さ い ゆ う

最尤法)

−→ Review

1. The distribution function of {Xi}ni=1 is f (x; θ), where x = (x1, x2, · · · , xn).

θ is a vector or matrix of unknown parameters, e.g., θ = (µ,Σ), where µ = E(Xi)

and Σ = V(Xi).

Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(·) is defined as L(θ; x) = f (x; θ).

Note that f (x; θ) =
∏n

i=1 f (xi; θ) when X1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed.
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The maximum likelihood estimate (MLE) of θ is the θ such that:

max
θ

L(θ; x). ⇐⇒ max
θ

log L(θ; x).

Thus, MLE satisfies the following two conditions:

(a)
∂ log L(θ; x)

∂θ
= 0. =⇒ Solution of θ: θ̃ = θ̃(x)

(b)
∂2 log L(θ; x)

∂θ∂θ′
is a negative definite matrix.

2. x = (x1, x2, · · · , xn) are used as the observations (i.e., observed data).

X = (X1, X2, · · · , Xn) denote the random variables associated with the joint

distribution f (x; θ) =
∏n

i=1 f (xi; θ).
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3. Replacing x by X, we otain the maximum likelihood estimator (MLE, which

is the same word as the maximum likelihood estimate).

That is, MLE of θ satisfies the following two conditions:

(a)
∂ log L(θ; X)

∂θ
= 0. =⇒ Solution of θ: θ̃ = θ̃(X)

(b)
∂2 log L(θ; X)

∂θ∂θ′
is a negative definite matrix.

4. Fisher’s information matrix (フィッシャーの情報行列) or simply informa-

tion matrix, denoted by I(θ), is given by:

I(θ) = −E
(∂2 log L(θ; X)

∂θ∂θ′
)
,

where we have the following equality:

−E
(∂2 log L(θ; X)

∂θ∂θ′
)

= E
(∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= V

(∂ log L(θ; X)
∂θ

)

Note that E(·) and V(·) are expected with respect to X.
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Proof of the above equality:
∫

L(θ; x)dx = 1

Take a derivative with respect to θ.
∫

∂L(θ; x)
∂θ

dx = 0

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative
∂L(θ; x)
∂θ

exists.)

Rewriting the above equation, we obtain:
∫

∂ log L(θ; x)
∂θ

L(θ; x)dx = 0,

i.e.,

E
(
∂ log L(θ; X)

∂θ

)
= 0.
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Again, differentiating the above with respect to θ, we obtain:
∫

∂2 log L(θ; x)
∂θ∂θ′

L(θ; x)dx +

∫
∂ log L(θ; x)

∂θ

∂L(θ; x)
∂′θ

dx

=

∫
∂2 log L(θ; x)

∂θ∂θ′
L(θ; x)dx +

∫
∂ log L(θ; x)

∂θ

∂ log L(θ; x)
∂θ′

L(θ; x)dx

= E
(∂2 log L(θ; X)

∂θ∂θ′
)

+ E
(∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= 0.

Therefore, we can derive the following equality:

−E
(
∂2 log L(θ; X)

∂θ∂θ′

)
= E

(
∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)

∂θ

)
,

where the second equality utilizes E
(
∂ log L(θ; X)

∂θ

)
= 0.

5. Cramer-Rao Lower Bound (クラメール・ラオの下限) is given by: (I(θ))−1.

Suppose that an estimator of θ is given by s(X).
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The expectation of s(X) is:

E(s(X)) =

∫
s(x)L(θ; x)dx.

Differentiating the above with respect to θ,

∂E(s(X))
∂θ

=

∫
s(x)

∂L(θ; x)
∂θ

dx =

∫
s(x)

∂ log L(θ; x)
∂θ

L(θ; x)dx

= Cov
(
s(X),

∂ log L(θ; X)
∂θ

)

For simplicity, let s(X) and θ be scalars.

Then,
(
∂E(s(X))

∂θ

)2

=

(
Cov

(
s(X),

∂ log L(θ; X)
∂θ

))2

= ρ2V (s(X)) V
(
∂ log L(θ; X)

∂θ

)

≤ V (s(X)) V
(
∂ log L(θ; X)

∂θ

)
,
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where ρ denotes the correlation coefficient between s(X) and
∂ log L(θ; X)

∂θ
, i.e.,

ρ =

Cov
(
s(X),

∂ log L(θ; X)
∂θ

)

√
V (s(X))

√
V

(
∂ log L(θ; X)

∂θ

) .

Note that |ρ| ≤ 1.

Therefore, we have the following inequality:

(
∂E(s(X))

∂θ

)2

≤ V(s(X)) V
(
∂ log L(θ; X)

∂θ

)
,

i.e.,

V(s(X)) ≥

(
∂E(s(X))

∂θ

)2

V
(
∂ log L(θ; X)

∂θ

)
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Especially, when E(s(X)) = θ, i.e., when s(X) is an unbiased estimator of θ, the

numerator of the right-hand side leads to one.

Therefore, we obtain:

V(s(X)) ≥ 1

−E
(
∂2 log L(θ; X)

∂θ2

) = (I(θ))−1.

Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) ≥ (I(θ))−1,

where I(θ) is defined as:

I(θ) = −E
(
∂2 log L(θ; X)

∂θ∂θ′

)

= E
(
∂ log L(θ; X)

∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)

∂θ

)
.
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The variance of any unbiased estimator of θ is larger than or equal to (I(θ))−1.

Thus, (I(θ))−1 results in the lower bound of the variance of any unbiased esti-

mator of θ.

6. Asymptotic Normality of MLE:

Let θ̃ be MLE of θ.

As n goes to infinity, we have the following result:

√
n(θ̃ − θ) −→ N

0, lim
n→∞

(
I(θ)
n

)−1 ,

where it is assumed that lim
n→∞

(
I(θ)
n

)
converges.

−→ The proof will be shown later.
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That is, when n is large, θ̃ is approximately distributed as follows:

θ̃ ∼ N
(
θ, (I(θ))−1

)
.

Suppose that s(X) = θ̃.

When n is large, V(s(X)) is approximately equal to (I(θ))−1.

7. Optimization (最適化):

MLE of θ results in the following maximization problem:

max
θ

log L(θ; x).

We often have the case where the solution of θ is not derived in closed form.

=⇒ Optimization procedure

0 =
∂ log L(θ; x)

∂θ
=
∂ log L(θ∗; x)

∂θ
+
∂2 log L(θ∗; x)

∂θ∂θ′
(θ − θ∗).
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Solving the above equation with respect to θ, we obtain the following:

θ = θ∗ −
(
∂2 log L(θ∗; x)

∂θ∂θ′

)−1
∂ log L(θ∗; x)

∂θ
.

Replace the variables as follows:

θ −→ θ(i+1)

θ∗ −→ θ(i)

Then, we have:

θ(i+1) = θ(i) −
(
∂2 log L(θ(i); x)

∂θ∂θ′

)−1
∂ log L(θ(i); x)

∂θ
.

=⇒ Newton-Raphson method (ニュートン・ラプソン法)

Replacing
∂2 log L(θ(i); x)

∂θ∂θ′
by E

(
∂2 log L(θ(i); x)

∂θ∂θ′

)
, we obtain the following op-
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timization algorithm:

θ(i+1) = θ(i) −
(
E

(
∂2 log L(θ(i); x)

∂θ∂θ′

))−1
∂ log L(θ(i); x)

∂θ

= θ(i) +
(
I(θ(i))

)−1 ∂ log L(θ(i); x)
∂θ

=⇒Method of Scoring (スコア法)

140


