8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS \Longrightarrow Stochastic linear restriction:

$$
\begin{array}{ll}
r=R \beta+v, & \mathrm{E}(v)=0 \text { and } \mathrm{V}(v)=\sigma^{2} \Psi \\
y=X \beta+u, & \mathrm{E}(u)=0 \text { and } \mathrm{V}(u)=\sigma^{2} I_{n}
\end{array}
$$

Using a matrix form,

$$
\binom{y}{r}=\binom{X}{R} \beta+\binom{u}{v}, \quad \mathrm{E}\binom{u}{v}=\binom{0}{0} \text { and } \mathrm{V}\binom{u}{v}=\sigma^{2}\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)
$$

For estimation, we do not need normality assumption.
Applying GLS, we obtain:

$$
\begin{aligned}
b & =\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{y}{r}\right) \\
& =\left(X^{\prime} X+R^{\prime} \Psi^{-1} R\right)^{-1}\left(X^{\prime} y+R^{\prime} \Psi^{-1} r\right)
\end{aligned}
$$

Mean and Variance of $b: \quad b$ is rewritten as follows:

$$
\begin{aligned}
b & =\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{y}{r}\right) \\
& =\beta+\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\binom{u}{v}
\end{aligned}
$$

Therefore, the mean and variance are given by:

$$
\begin{aligned}
& \mathrm{E}(b)=\beta \quad \Longrightarrow \quad b \text { is unbiased. } \\
& \begin{aligned}
\mathrm{V}(b) & =\sigma^{2}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X+R^{\prime} \Psi^{-1} R\right)^{-1}
\end{aligned}
\end{aligned}
$$

9 Maximum Likelihood Estimation（MLE，最哭法）

\longrightarrow Review

1．The distribution function of $\left\{X_{i}\right\}_{i=1}^{n}$ is $f(x ; \theta)$ ，where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ ． θ is a vector or matrix of unknown parameters，e．g．，$\theta=(\mu, \Sigma)$ ，where $\mu=\mathrm{E}\left(X_{i}\right)$ and $\Sigma=\mathrm{V}\left(X_{i}\right)$ ．

Note that X is a vector of random variables and x is a vector of their realizations （i．e．，observed data）．

Likelihood function $L(\cdot)$ is defined as $L(\theta ; x)=f(x ; \theta)$ ．

Note that $f(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$ when $X_{1}, X_{2}, \cdots, X_{n}$ are mutually indepen－ dently and identically distributed．

The maximum likelihood estimate (MLE) of θ is the θ such that:

$$
\max _{\theta} L(\theta ; x) . \quad \Longleftrightarrow \quad \max _{\theta} \log L(\theta ; x)
$$

Thus, MLE satisfies the following two conditions:
(a) $\frac{\partial \log L(\theta ; x)}{\partial \theta}=0 . \quad \Longrightarrow \quad$ Solution of $\theta: \tilde{\theta}=\tilde{\theta}(x)$
(b) $\frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}}$ is a negative definite matrix.
2. $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ are used as the observations (i.e., observed data).
$X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ denote the random variables associated with the joint distribution $f(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$.

3．Replacing x by X ，we otain the maximum likelihood estimator（MLE，which is the same word as the maximum likelihood estimate）．

That is，MLE of θ satisfies the following two conditions：
（a）$\frac{\partial \log L(\theta ; X)}{\partial \theta}=0 . \quad \Longrightarrow \quad$ Solution of $\theta: \tilde{\theta}=\tilde{\theta}(X)$
（b）$\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}$ is a negative definite matrix．
4．Fisher＇s information matrix（フィツシャーの情報行列）or simply informa－ tion matrix，denoted by $I(\theta)$ ，is given by：

$$
I(\theta)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)
$$

where we have the following equality：

$$
-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

Note that $\mathrm{E}(\cdot)$ and $\mathrm{V}(\cdot)$ are expected with respect to X ．

Proof of the above equality:

$$
\int L(\theta ; x) \mathrm{d} x=1
$$

Take a derivative with respect to θ.

$$
\int \frac{\partial L(\theta ; x)}{\partial \theta} \mathrm{d} x=0
$$

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative $\frac{\partial L(\theta ; x)}{\partial \theta}$ exists.)
Rewriting the above equation, we obtain:

$$
\int \frac{\partial \log L(\theta ; x)}{\partial \theta} L(\theta ; x) \mathrm{d} x=0,
$$

i.e.,

$$
\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0
$$

Again，differentiating the above with respect to θ ，we obtain：

$$
\begin{aligned}
& \int \frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x+\int \frac{\partial \log L(\theta ; x)}{\partial \theta} \frac{\partial L(\theta ; x)}{\partial^{\prime} \theta} \mathrm{d} x \\
& \quad=\int \frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x+\int \frac{\partial \log L(\theta ; x)}{\partial \theta} \frac{\partial \log L(\theta ; x)}{\partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x \\
& \quad=\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)+\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=0 .
\end{aligned}
$$

Therefore，we can derive the following equality：

$$
-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

where the second equality utilizes $\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0$ ．
5．Cramer－Rao Lower Bound（クラメール・ラオの下限）is given by：$(I(\theta))^{-1}$ ．
Suppose that an estimator of θ is given by $s(X)$ ．

The expectation of $s(X)$ is:

$$
\mathrm{E}(s(X))=\int s(x) L(\theta ; x) \mathrm{d} x
$$

Differentiating the above with respect to θ,

$$
\begin{aligned}
\frac{\partial \mathrm{E}(s(X))}{\partial \theta} & =\int s(x) \frac{\partial L(\theta ; x)}{\partial \theta} \mathrm{d} x=\int s(x) \frac{\partial \log L(\theta ; x)}{\partial \theta} L(\theta ; x) \mathrm{d} x \\
& =\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

For simplicity, let $s(X)$ and θ be scalars.
Then,

$$
\begin{aligned}
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} & =\left(\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)\right)^{2}=\rho^{2} \mathrm{~V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right) \\
& \leq \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

where ρ denotes the correlation coefficient between $s(X)$ and $\frac{\partial \log L(\theta ; X)}{\partial \theta}$, i.e.,

$$
\rho=\frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}{\sqrt{\mathrm{V}(s(X))} \sqrt{\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}} .
$$

Note that $|\rho| \leq 1$.
Therefore, we have the following inequality:

$$
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} \leq \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

i.e.,

$$
\mathrm{V}(s(X)) \geq \frac{\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2}}{\mathrm{~V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}
$$

Especially, when $\mathrm{E}(s(X))=\theta$, i.e., when $s(X)$ is an unbiased estimator of θ, the numerator of the right-hand side leads to one.

Therefore, we obtain:

$$
\mathrm{V}(s(X)) \geq \frac{1}{-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta^{2}}\right)}=(I(\theta))^{-1}
$$

Even in the case where $s(X)$ is a vector, the following inequality holds.

$$
\mathrm{V}(s(X)) \geq(I(\theta))^{-1}
$$

where $I(\theta)$ is defined as:

$$
\begin{aligned}
I(\theta) & =-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right) \\
& =\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

The variance of any unbiased estimator of θ is larger than or equal to $(I(\theta))^{-1}$.
Thus, $(I(\theta))^{-1}$ results in the lower bound of the variance of any unbiased estimator of θ.
6. Asymptotic Normality of MLE:

Let $\tilde{\theta}$ be MLE of θ.
As n goes to infinity, we have the following result:

$$
\sqrt{n}(\tilde{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)^{-1}\right)
$$

where it is assumed that $\lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)$ converges.
\longrightarrow The proof will be shown later.

That is，when n is large，$\tilde{\theta}$ is approximately distributed as follows：

$$
\tilde{\theta} \sim N\left(\theta,(I(\theta))^{-1}\right) .
$$

Suppose that $s(X)=\tilde{\theta}$ ．
When n is large， $\mathrm{V}(s(X))$ is approximately equal to $(I(\theta))^{-1}$ ．

7．Optimization（最適化）：

MLE of θ results in the following maximization problem：

$$
\max _{\theta} \log L(\theta ; x)
$$

We often have the case where the solution of θ is not derived in closed form．
\Longrightarrow Optimization procedure

$$
0=\frac{\partial \log L(\theta ; x)}{\partial \theta}=\frac{\partial \log L\left(\theta^{*} ; x\right)}{\partial \theta}+\frac{\partial^{2} \log L\left(\theta^{*} ; x\right)}{\partial \theta \partial \theta^{\prime}}\left(\theta-\theta^{*}\right)
$$

Solving the above equation with respect to θ ，we obtain the following：

$$
\theta=\theta^{*}-\left(\frac{\partial^{2} \log L\left(\theta^{*} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\theta^{*} ; x\right)}{\partial \theta} .
$$

Replace the variables as follows：

$$
\begin{aligned}
\theta & \longrightarrow \theta^{(i+1)} \\
\theta^{*} & \longrightarrow \theta^{(i)}
\end{aligned}
$$

Then，we have：

$$
\theta^{(i+1)}=\theta^{(i)}-\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta} .
$$

\Longrightarrow Newton－Raphson method（ニュートン・ラプソン法）
Replacing $\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}$ by $\mathrm{E}\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)$ ，we obtain the following op－
timization algorithm：

$$
\begin{aligned}
\theta^{(i+1)} & =\theta^{(i)}-\left(\mathrm{E}\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta} \\
& =\theta^{(i)}+\left(I\left(\theta^{(i)}\right)\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta}
\end{aligned}
$$

\Longrightarrow Method of Scoring（スコア法）

