
10 Asymptotic Theory

1. Definition: Convergence in Distribution (分布収束)

A series of random variables X1, X2, · · ·, Xn, · · · have distribution functions F1,

F2, · · ·, respectively.

If

lim
n→∞

Fn = F,

then we say that a series of random variables X1, X2, · · · converges to F in

distribution.

2. Consistency (一致性):

(a) Definition: Convergence in Probability (確率収束)

Let {Zn : n = 1, 2, · · ·} be a series of random variables.
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If the following holds,

lim
n→∞

P(|Zn − θ| < ε) = 1,

for any positive ε, then we say that Zn converges to θ in probability.

θ is called a probability limit (確率極限) of Zn.

plim Zn = θ.

(b) Let θ̂n be an estimator of parameter θ.

If θ̂n converges to θ in probability, we say that θ̂n is a consistent estimator

of θ.

3. A General Case of Chebyshev’s Inequality:

For g(X) ≥ 0,

P(g(X) ≥ k) ≤ E(g(X))
k

,
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where k is a positive constant.

4. Example: For a random variable X, set g(X) = (X − µ)′(X − µ), E(X) = µ and

V(X) = Σ.

Then, we have the following inequality:

P((X − µ)′(X − µ) ≥ k) ≤ tr(Σ)
k

.

Note as follows:

E((X − µ)′(X − µ)) = E
(
tr((X − µ)′(X − µ))

)
= E

(
tr((X − µ)(X − µ)′)

)

= tr
(
E((X − µ)(X − µ)′)

)
= tr(Σ).
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5. Example 1 (Univariate Case):

Suppose that Xi ∼ (µ, σ2), i = 1, 2, · · · , n.

Then, the sample average X is a consistent estimator of µ.

Proof:

Note that g(X) = (X − µ)2, ε2 = k, E(g(X)) = V(X) =
σ2

n
.

Use Chebyshev’s inequality.

If n −→ ∞,

P(|X − µ| ≥ ε) ≤ σ2

nε2 −→ 0, for any ε.

That is. for any ε,

lim
n→∞

P(|X − µ| < ε) = 1.

=⇒ Chebyshev’s inequality
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6. Example 2 (Multivariate Case):

Suppose that Xi ∼ (µ,Σ), i = 1, 2, · · · , n.

Then, the sample average X is a consistent estimator of µ.

Proof:

Note that g(X) = (X − µ)′(X − µ), ε2 = k, E(g(X)) = tr
(
V(X)

)
= tr

(1
n

Σ
)
.

Use Chebyshev’s inequality.

If n −→ ∞,

P((X − µ)′(X − µ) ≥ k) = P(|X − µ| ≥ ε) ≤ tr(Σ)
nε2 −→ 0, for any positive ε.

That is. for any positive ε, limn→∞ P((X − µ)′(X − µ) < k) = 1.

Note that |X − µ| =
√

(X − µ)′(X − µ), which is the distance between X and µ.

=⇒ Chebyshev’s inequality
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7. Some Formulas:

Let Xn and Yn be the random variables which satisfy plim Xn = c and plim Yn =

d. Then,

(a) plim (Xn + Yn) = c + d

(b) plim XnYn = cd

(c) plim Xn/Yn = c/d for d , 0

(d) plim g(Xn) = g(c) for a function g(·)
=⇒ Slutsky’s Theorem (スルツキー定理)
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8. Central Limit Theorem (中心極限定理)

Univariate Case: X1, X2, · · ·, Xn are mutually independently and identically

distributed as Xi ∼ (µ, σ2).

Then,
X − E(X)√

V(X)
=

X − µ
σ/
√

n
−→ N(0, 1),

which implies

√
n(X − µ) =

1√
n

n∑

i=1

(Xi − µ) −→ N(0, σ2).
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Multivariate Case: X1, X2, · · ·, Xn are mutually independently and identically

distributed as Xi ∼ (µ, Σ).

Then,
1√
n

n∑

i=1

(Xi − µ) −→ N(0,Σ)

9. Central Limit Theorem (Generalization)

X1, X2, · · ·, Xn are mutually independently and identically distributed as Xi ∼
(µ, Σi).

Then,
1√
n

n∑

i=1

(Xi − µ) −→ N(0,Σ),

where

Σ = lim
n→∞


1
n

n∑

i=1

Σi

 .
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10. Definition: Let θ̂n be a consistent estimator of θ.

Suppose that
√

n(θ̂n − θ) converges to N(0,Σ) in distribution.

Then, we say that θ̂n has an asymptotic distribution (漸近分布): N(θ,Σ/n).

10.1 MLE: Asymptotic Properties

1. X1, X2, · · · , Xn are random variables with density function f (x; θ).

Let θ̂n be a maximum likelihood estimator of θ.

Then, under some regularity conditions. θ̂n is a consistent estimator of θ and

the asymptotic distribution of
√

n(θ̂ − θ) is given by: N
0, lim

(
I(θ)
n

)−1.

2. Regularity Conditions:

(a) The domain of Xi does not depend on θ.
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(b) There exists at least third-order derivative of f (x; θ) with respect to θ, and

their derivatives are finite.

3. Thus, MLE is

(i) consistent，

(ii) asymptotically normal，and

(iii) asymptotically efficient.

Proof: The log-likelihood function is given by:

log L(θ) = log
n∏

i=1

f (Xi; θ) =

n∑

i=1

log f (Xi; θ)

Note that the MLE θ̃ satisfies:

∂ log L(θ̃)
∂θ

=

n∑

i=1

∂ log f (Xi; θ̃)
∂θ

= 0.
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Xi is a random variable.

On the other hand, the integration of L(θ) with respect to x = (x1, x2, · · · , xn) is one,

because L(θ) is a joint distribution of x1, x2, · · ·, xn. Therefore, we have:
∫

L(θ)dx = 1.

Taking the first-derivative of the above equation on both sides with respect to θ, we

obtain: ∫
∂L(θ)
∂θ

dx = 0,

which is rewritten as:
∫

∂L(θ)
∂θ

dx =

∫
∂ log L(θ)

∂θ
L(θ)dx = E

(∂ log L(θ)
∂θ

)
= 0.

Taking the derivative with respective θ, again (the second-derivative of
∫

L(θ)dx = 1
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on both sides with respect to θ), we have:
∫

∂2 log L(θ)
∂θ2 L(θ)dx +

∫
∂ log L(θ)

∂θ

∂ log L(θ)
∂θ′

L(θ)dx = 0,

which is rewritten as follows:

−
∫

∂2 log L(θ)
∂θ2 L(θ)dx =

∫
∂ log L(θ)

∂θ

∂ log L(θ)
∂θ′

L(θ)dx.

That is, we can derive the following:

−E
(∂2 log L(θ)

∂θ∂θ′
)

= E
(∂ log L(θ)

∂θ

∂ log L(θ)
∂θ′

)
= V

(∂ log L(θ)
∂θ

)
≡ I(θ),

where the second equality holds because of E
(∂ log L(θ)

∂θ

)
= 0.

I(θ) is called Fisher’s information matrix (or simply, information matrix).

Thus, the first-derivative of L(θ) is distributed as mean zero and variance I(θ), i.e.,

∂ log L(θ)
∂θ

=

n∑

i=1

∂ log f (Xi; θ)
∂θ

∼ (0, I(θ)).
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Note that we do not know the distribution of the first-derivative of L(θ), because we

do not specify functional form of f (·)
Using the central limit theorem (generalization) shown above, asymptotically we ob-

tain the following distribution:

1√
n
∂ log L(θ)

∂θ
=

1√
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

−→ N(0,Σ),

where Σ = lim
n→∞

(1
n

I(θ)
)
.

Let θ̃ be the maximum likelihood estimator.

Linearizing
∂ log L(θ̃)

∂θ
around θ̃ = θ, we obtain:

0 =
1√
n
∂ log L(θ̃)

∂θ
≈ 1√

n
∂ log L(θ)

∂θ
+

1√
n
∂2 log L(θ)
∂θ∂θ′

(θ̃ − θ),

where the rest of terms (i.e., the second-order term, the third-order term, ...) are ig-
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nored, which implies that the distribution of
1√
n
∂ log L(θ)

∂θ
is asymptotically equiva-

lent to that of
1√
n
∂2 log L(θ)
∂θ∂θ′

(θ̃ − θ).

We have already known the distribution of
1√
n
∂ log L(θ)

∂θ
as follows:

1√
n
∂ log L(θ)

∂θ
≈ − 1√

n
∂2 log L(θ)
∂θ∂θ′

(θ̃ − θ) =

(
−1

n
∂2 log L(θ)
∂θ∂θ′

) √
n(θ̃ − θ) −→ N(0,Σ).

Note as follows:

−1
n
∂2 log L(θ)
∂θ∂θ′

−→ lim
n→∞

(
1
n

E
(
−∂

2 log L(θ)
∂θ∂θ′

))
= lim

n→∞

(1
n

I(θ)
)

= Σ.

Thus,
(
−1

n
∂2 log L(θ)
∂θ∂θ′

) √
n(θ̃−θ) asymptotically has the same distribution as Σ

√
n(θ̃−

θ).

Therefore,

V(Σ
√

n(̂θ − θ)) = ΣV(
√

n(̂θ − θ))Σ′ −→ Σ.
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Note that Σ = Σ′. Thus, we have the asymptotic variance of
√

n(̂θ − θ) as follows:

V(
√

n(̂θ − θ)) −→ Σ−1ΣΣ−1 = Σ−1.

Finally, we obtain:
√

n(̂θ − θ) −→ N(0,Σ−1).
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11 Consistency and Asymptotic Normality of OLSE

Regression model: y = Xβ + u, u ∼ (0, σ2In).

Consistency:

1. Let β̂n = (X′X)−1X′y be the OLS with sample size n.

Consistency: As n is large, β̂n converges to β.

2. Assume the stationarity condition for X, i.e.,

1
n

X′X −→ Mxx.

and no correlation between X and u, i.e.,

1
n

X′u −→ 0.
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3. Note that
1
n

X′X −→ Mxx results in (
1
n

X′X)−1 −→ M−1
xx .

=⇒ Slutsky’s Theorem

(*) Slutsky’s Theorem g(θ̂) −→ g(θ), when θ̂ −→ θ.

4. OLS is given by:

β̂n = β + (X′X)−1X′u = β + (
1
n

X′X)−1(
1
n

X′u).

Therefore,

β̂n −→ β + M−1
xx × 0 = β

Thus, OLSE is a consistent estimator.
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Asymptotic Normality:

1. Asymptotic Normality of OLSE
√

n(β̂n − β) −→ N(0.σ2M−1
xx ), when n −→ ∞.

2. Central Limit Theorem: Greenberg and Webster (1983)

Z1, Z2, · · ·, Zn are mutually independent. Zi is distributed with mean µ and

variance Σi for i = 1, 2, · · · , n.

Then, we have the following result:

1√
n

n∑

i=1

(Zi − µ) −→ N(0,Σ),

where

Σ = lim
n→∞


1
n

n∑

i=1

Σi

 .

Note that the distribution of Zi is not assumed.
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3. Define Zi = x′iui. Then, Σi = V(Zi) = σ2x′i xi.

4. Σ is defined as:

Σ = lim
n→∞


1
n

n∑

i=1

σ2x′i xi

 = σ2 lim
n→∞

(
1
n

X′X
)

= σ2Mxx,

where

X =



x1

x2
...

xn



5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain

the following:

1√
n

n∑

i=1

x′iui =
1√
n

X′u −→ N(0, σ2Mxx).
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On the other hand, from β̂n = β + (X′X)−1X′u, we can rewrite as:

√
n(β̂ − β) =

(1
n

X′X
)−1 1√

n
X′u.

V
((1

n
X′X

)−1 1√
n

X′u
)

= E
((1

n
X′X

)−1 1√
n

X′u
((1

n
X′X

)−1 1√
n

X′u
)′)

=
(1
n

X′X
)−1(1

n
X′E(uu′)X

)(1
n

X′X
)−1

= σ2
(1
n

X′X
)−1(1

n
X′X

)(1
n

X′X
)−1

−→ σ2M−1
xx MxxM−1

xx = σ2M−1
xx .

Therefore,
√

n(β̂ − β) −→ N(0, σ2M−1
xx )

=⇒ Asymptotic normality (漸近的正規性) of OLSE

The distribution of ui is not assumed.
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