10 Asymptotic Theory

1. Definition: Convergence in Distribution (分布収束)

A series of random variables $X_1, X_2, \dots, X_n, \dots$ have distribution functions F_1, F_2, \dots , respectively.

If

$$\lim_{n\to\infty} F_n = F,$$

then we say that a series of random variables X_1, X_2, \cdots converges to F in distribution.

2. Consistency (一致性):

(a) Definition: Convergence in Probability (確率収束)

Let $\{Z_n : n = 1, 2, \dots\}$ be a series of random variables.

If the following holds,

$$\lim_{n\to\infty} P(|Z_n-\theta|<\epsilon)=1,$$

for any positive ϵ , then we say that Z_n converges to θ in probability.

 θ is called a **probability limit** (確率極限) of Z_n .

$$p\lim Z_n = \theta.$$

- (b) Let $\hat{\theta}_n$ be an estimator of parameter θ .
 - If $\hat{\theta}_n$ converges to θ in probability, we say that $\hat{\theta}_n$ is a consistent estimator of θ .
- 3. A General Case of Chebyshev's Inequality:

For $g(X) \ge 0$,

$$P(g(X) \ge k) \le \frac{\mathrm{E}(g(X))}{k},$$

where k is a positive constant.

4. **Example:** For a random variable X, set $g(X) = (X - \mu)'(X - \mu)$, $E(X) = \mu$ and $V(X) = \Sigma$.

Then, we have the following inequality:

$$P((X - \mu)'(X - \mu) \ge k) \le \frac{\operatorname{tr}(\Sigma)}{k}.$$

Note as follows:

$$\begin{split} \mathrm{E}((X-\mu)'(X-\mu)) &= \mathrm{E}\Big(\mathrm{tr}((X-\mu)'(X-\mu))\Big) = \mathrm{E}\Big(\mathrm{tr}((X-\mu)(X-\mu)')\Big) \\ &= \mathrm{tr}\Big(\mathrm{E}((X-\mu)(X-\mu)')\Big) = \mathrm{tr}(\Sigma). \end{split}$$

5. Example 1 (Univariate Case):

Suppose that $X_i \sim (\mu, \sigma^2)$, $i = 1, 2, \dots, n$.

Then, the sample average \overline{X} is a consistent estimator of μ .

Proof:

Note that
$$g(\overline{X}) = (\overline{X} - \mu)^2$$
, $\epsilon^2 = k$, $E(g(\overline{X})) = V(\overline{X}) = \frac{\sigma^2}{n}$.

Use Chebyshev's inequality.

If $n \longrightarrow \infty$,

$$P(|\overline{X} - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2} \longrightarrow 0$$
, for any ϵ .

That is, for any ϵ ,

$$\lim_{n\to\infty} P(|\overline{X} - \mu| < \epsilon) = 1.$$

⇒ Chebyshev's inequality

6. Example 2 (Multivariate Case):

Suppose that $X_i \sim (\mu, \Sigma)$, $i = 1, 2, \dots, n$.

Then, the sample average \overline{X} is a consistent estimator of μ .

Proof:

Note that
$$g(\overline{X}) = (\overline{X} - \mu)'(\overline{X} - \mu), \ \epsilon^2 = k, \ \mathrm{E}(g(\overline{X})) = \mathrm{tr}(V(\overline{X})) = \mathrm{tr}(\frac{1}{n}\Sigma).$$

Use Chebyshev's inequality.

If $n \longrightarrow \infty$,

$$P((\overline{X} - \mu)'(\overline{X} - \mu) \ge k) = P(|\overline{X} - \mu| \ge \epsilon) \le \frac{\operatorname{tr}(\Sigma)}{n\epsilon^2} \longrightarrow 0$$
, for any positive ϵ .

That is, for any positive ϵ , $\lim_{n\to\infty} P((\overline{X} - \mu)'(\overline{X} - \mu) < k) = 1$.

Note that $|\overline{X} - \mu| = \sqrt{(\overline{X} - \mu)'(\overline{X} - \mu)}$, which is the distance between X and μ .

⇒ Chebyshev's inequality

7. Some Formulas:

Let X_n and Y_n be the random variables which satisfy plim $X_n = c$ and plim $Y_n = d$. Then,

- (a) plim $(X_n + Y_n) = c + d$
- (b) $plim X_n Y_n = cd$
- (c) plim $X_n/Y_n = c/d$ for $d \neq 0$
- (d) plim $g(X_n) = g(c)$ for a function $g(\cdot)$
 - ⇒ Slutsky's Theorem (スルツキー定理)

8. Central Limit Theorem (中心極限定理)

Univariate Case: X_1, X_2, \dots, X_n are mutually independently and identically distributed as $X_i \sim (\mu, \sigma^2)$.

Then,

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1),$$

which implies

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Multivariate Case: X_1, X_2, \dots, X_n are mutually independently and identically distributed as $X_i \sim (\mu, \Sigma)$.

Then,

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma)$$

9. Central Limit Theorem (Generalization)

 X_1, X_2, \dots, X_n are mutually independently and identically distributed as $X_i \sim (\mu, \Sigma_i)$.

Then,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_i-\mu) \longrightarrow N(0,\Sigma),$$

where

$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_i \right).$$

10. **Definition:** Let $\hat{\theta}_n$ be a consistent estimator of θ .

Suppose that $\sqrt{n}(\hat{\theta}_n - \theta)$ converges to $N(0, \Sigma)$ in distribution.

Then, we say that $\hat{\theta}_n$ has an **asymptotic distribution** (漸近分布): $N(\theta, \Sigma/n)$.

10.1 MLE: Asymptotic Properties

1. X_1, X_2, \dots, X_n are random variables with density function $f(x; \theta)$.

Let $\hat{\theta}_n$ be a maximum likelihood estimator of θ .

Then, under some **regularity conditions**. $\hat{\theta}_n$ is a consistent estimator of θ and the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is given by: $N\left(0, \lim\left(\frac{I(\theta)}{n}\right)^{-1}\right)$.

2. Regularity Conditions:

(a) The domain of X_i does not depend on θ .

(b) There exists at least third-order derivative of $f(x; \theta)$ with respect to θ , and their derivatives are finite.

3. Thus, MLE is

- (i) consistent,
- (ii) asymptotically normal, and
- (iii) asymptotically efficient.

Proof: The log-likelihood function is given by:

$$\log L(\theta) = \log \prod_{i=1}^{n} f(X_i; \theta) = \sum_{i=1}^{n} \log f(X_i; \theta)$$

Note that the MLE $\tilde{\theta}$ satisfies:

$$\frac{\partial \log L(\tilde{\theta})}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(X_i; \tilde{\theta})}{\partial \theta} = 0.$$

 X_i is a random variable.

On the other hand, the integration of $L(\theta)$ with respect to $x = (x_1, x_2, \dots, x_n)$ is one, because $L(\theta)$ is a joint distribution of x_1, x_2, \dots, x_n . Therefore, we have:

$$\int L(\theta) \mathrm{d}x = 1.$$

Taking the first-derivative of the above equation on both sides with respect to θ , we obtain:

$$\int \frac{\partial L(\theta)}{\partial \theta} \mathrm{d}x = 0,$$

which is rewritten as:

$$\int \frac{\partial L(\theta)}{\partial \theta} dx = \int \frac{\partial \log L(\theta)}{\partial \theta} L(\theta) dx = E\left(\frac{\partial \log L(\theta)}{\partial \theta}\right) = 0.$$

Taking the derivative with respective θ , again (the second-derivative of $\int L(\theta) dx = 1$

on both sides with respect to θ), we have:

$$\int \frac{\partial^2 \log L(\theta)}{\partial \theta^2} L(\theta) dx + \int \frac{\partial \log L(\theta)}{\partial \theta} \frac{\partial \log L(\theta)}{\partial \theta'} L(\theta) dx = 0,$$

which is rewritten as follows:

$$-\int \frac{\partial^2 \log L(\theta)}{\partial \theta^2} L(\theta) dx = \int \frac{\partial \log L(\theta)}{\partial \theta} \frac{\partial \log L(\theta)}{\partial \theta'} L(\theta) dx.$$

That is, we can derive the following:

$$-\mathrm{E}\Big(\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\Big) = \mathrm{E}\Big(\frac{\partial \log L(\theta)}{\partial \theta} \frac{\partial \log L(\theta)}{\partial \theta'}\Big) = \mathrm{V}\Big(\frac{\partial \log L(\theta)}{\partial \theta}\Big) \equiv I(\theta),$$

where the second equality holds because of $E\left(\frac{\partial \log L(\theta)}{\partial \theta}\right) = 0$.

 $I(\theta)$ is called Fisher's information matrix (or simply, information matrix).

Thus, the first-derivative of $L(\theta)$ is distributed as mean zero and variance $I(\theta)$, i.e.,

$$\frac{\partial \log L(\theta)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta} \sim (0, I(\theta)).$$

Note that we do not know the distribution of the first-derivative of $L(\theta)$, because we do not specify functional form of $f(\cdot)$

Using the central limit theorem (generalization) shown above, asymptotically we obtain the following distribution:

$$\frac{1}{\sqrt{n}}\frac{\partial \log L(\theta)}{\partial \theta} = \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\frac{\partial \log f(X_i;\theta)}{\partial \theta} \longrightarrow N(0,\Sigma),$$

where
$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} I(\theta) \right)$$
.

Let $\tilde{\theta}$ be the maximum likelihood estimator.

Linearizing $\frac{\partial \log L(\tilde{\theta})}{\partial \theta}$ around $\tilde{\theta} = \theta$, we obtain:

$$0 = \frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta})}{\partial \theta} \approx \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta} + \frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta),$$

where the rest of terms (i.e., the second-order term, the third-order term, ...) are ig-

nored, which implies that the distribution of $\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}$ is asymptotically equivalent to that of $\frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta)$.

We have already known the distribution of $\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}$ as follows:

$$\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta} \approx -\frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta) = \left(-\frac{1}{n} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} \right) \sqrt{n} (\tilde{\theta} - \theta) \longrightarrow N(0, \Sigma).$$

Note as follows:

$$-\frac{1}{n}\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} \longrightarrow \lim_{n \to \infty} \left(\frac{1}{n} \mathbb{E}\left(-\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\right)\right) = \lim_{n \to \infty} \left(\frac{1}{n} I(\theta)\right) = \Sigma.$$

Thus,
$$\left(-\frac{1}{n}\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\right) \sqrt{n}(\tilde{\theta} - \theta)$$
 asymptotically has the same distribution as $\sum \sqrt{n}(\tilde{\theta} - \theta)$.

Therefore,

$$V(\Sigma \sqrt{n}(\widehat{\theta} - \theta)) = \Sigma V(\sqrt{n}(\widehat{\theta} - \theta))\Sigma' \longrightarrow \Sigma.$$

Note that $\Sigma = \Sigma'$. Thus, we have the asymptotic variance of $\sqrt{n}(\widehat{\theta} - \theta)$ as follows:

$$V(\sqrt{n}(\widehat{\theta} - \theta)) \longrightarrow \Sigma^{-1}\Sigma\Sigma^{-1} = \Sigma^{-1}.$$

Finally, we obtain:

$$\sqrt{n}(\widehat{\theta} - \theta) \longrightarrow N(0, \Sigma^{-1}).$$

Consistency and Asymptotic Normality of OLSE 11

Regression model: $y = X\beta + u$, $u \sim (0, \sigma^2 I_n)$.

$$v = X\beta + u$$

$$u \sim (0, \sigma^2 I_n)$$

Consistency:

1. Let $\hat{\beta}_n = (X'X)^{-1}X'y$ be the OLS with sample size n.

Consistency: As *n* is large, $\hat{\beta}_n$ converges to β .

2. Assume the stationarity condition for X, i.e.,

$$\frac{1}{n}X'X \longrightarrow M_{xx}.$$

and no correlation between X and u, i.e.,

$$\frac{1}{n}X'u \longrightarrow 0.$$

- 3. Note that $\frac{1}{n}X'X \longrightarrow M_{xx}$ results in $(\frac{1}{n}X'X)^{-1} \longrightarrow M_{xx}^{-1}$.
 - ⇒ Slutsky's Theorem
 - (*) **Slutsky's Theorem** $g(\hat{\theta}) \longrightarrow g(\theta)$, when $\hat{\theta} \longrightarrow \theta$.
- 4. OLS is given by:

$$\hat{\beta}_n = \beta + (X'X)^{-1}X'u = \beta + (\frac{1}{n}X'X)^{-1}(\frac{1}{n}X'u).$$

Therefore,

$$\hat{\beta}_n \longrightarrow \beta + M_{rr}^{-1} \times 0 = \beta$$

Thus, OLSE is a consistent estimator.

Asymptotic Normality:

1. Asymptotic Normality of OLSE

$$\sqrt{n}(\hat{\beta}_n - \beta) \longrightarrow N(0.\sigma^2 M_{rr}^{-1}), \text{ when } n \longrightarrow \infty.$$

2. **Central Limit Theorem:** Greenberg and Webster (1983)

 Z_1, Z_2, \dots, Z_n are mutually independent. Z_i is distributed with mean μ and variance Σ_i for $i = 1, 2, \dots, n$.

Then, we have the following result:

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n (Z_i - \mu) \longrightarrow N(0, \Sigma),$$

where

$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_i \right).$$

Note that the distribution of Z_i is not assumed.

3. Define
$$Z_i = x_i' u_i$$
. Then, $\Sigma_i = V(Z_i) = \sigma^2 x_i' x_i$.

4. Σ is defined as:

$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \sigma^2 x_i' x_i \right) = \sigma^2 \lim_{n \to \infty} \left(\frac{1}{n} X' X \right) = \sigma^2 M_{xx},$$

where

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain the following:

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}x_{i}'u_{i}=\frac{1}{\sqrt{n}}X'u\longrightarrow N(0,\sigma^{2}M_{xx}).$$

On the other hand, from $\hat{\beta}_n = \beta + (X'X)^{-1}X'u$, we can rewrite as:

$$\sqrt{n}(\hat{\beta} - \beta) = \left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u.$$

$$V\left(\left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u\right) = E\left(\left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u\left(\left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u\right)'\right)$$

$$= \left(\frac{1}{n}X'X\right)^{-1}\left(\frac{1}{n}X'E(uu')X\right)\left(\frac{1}{n}X'X\right)^{-1}$$

$$= \sigma^{2}\left(\frac{1}{n}X'X\right)^{-1}\left(\frac{1}{n}X'X\right)\left(\frac{1}{n}X'X\right)^{-1}$$

$$\longrightarrow \sigma^{2}M_{xx}^{-1}M_{xx}M_{xx}^{-1} = \sigma^{2}M_{xx}^{-1}.$$

Therefore,

$$\sqrt{n}(\hat{\beta} - \beta) \longrightarrow N(0, \sigma^2 M_{rr}^{-1})$$

⇒ Asymptotic normality (漸近的正規性) of OLSE

The distribution of u_i is not assumed.