10 Asymptotic Theory

1. Definition: Convergence in Distribution (I [J [J [J)

A series of random variables X, X5, - - -, X,, - - - have distribution functions F,
F,, - - -, respectively.
If

lim F, = F,

P
then we say that a series of random variables X;, X;, --- converges to F in
distribution.

2. Consistency (O 00 [0 ):

(a) Definition: Convergence in Probability ([ [ [ [J)

Let{Z,: n=1,2,---} be a series of random variables.
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If the following holds,
}}1_210 P(Z, -6l <€) =1,
for any positive €, then we say that Z, converges to 6 in probability.
6 is called a probability limit (O 00 00 0 ) of Z,.
plimZ, = 6.

(b) Let 8, be an estimator of parameter 6.

If §, converges to  in probability, we say that 6, is a consistent estimator

of 6.

3. A General Case of Chebyshev’s Inequality:

For g(X) > 0,

P(g(X) > k) < E(gIEX) ),
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where £ is a positive constant.

. Example: For a random variable X, set g(X) = (X — u)"(X — ), E(X) = p and
VX)=X

Then, we have the following inequality:

PUX ) (X ) > ) < @

Note as follows:

B(X — ' (X = ) = E(tr((X = ) (X = ) = E(tr((X ~ p)(X =~ p))

= tr(E((X - )X — p))) = tr(2).
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5. Example 1 (Univariate Case):
Suppose that X; ~ (u,0?),i=1,2,---,n.
Then, the sample average X is a consistent estimator of .
Proof:
DMHM@@%%YﬂMx%%E@@D:WEzai
Use Chebyshev’s inequality.

If n — oo,
2

P(X —ul > e) < 0-—2 — 0, for any e.
ne

That is. for any e,

lim P(X —p| < €) = 1.

— Chebyshev’s inequality
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6. Example 2 (Multivariate Case):
Suppose that X; ~ (1, %), i=1,2,---,n.
Then, the sample average X is a consistent estimator of .
Proof:
Note that g(X) = (X - u) (X — ), € = k, Eg(X)) = tr( V(X)) = tr(%Z).
Use Chebyshev’s inequality.

If n — oo,

_ — — tr(Z
P(X-uwX-w=k)y=P(X—-ul>e) < Lz) — 0, for any positive €.
ne

That is. for any positive €, 1im,_. P(X —u)' (X — ) < k) = 1.

Note that [X — y| = \/ (X — ) (X — p), which is the distance between X and p.

— Chebyshev’s inequality
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7. Some Formulas:
Let X, and Y, be the random variables which satisfy plim X,, = cand plim ¥,, =
d. Then,
(@) piim (X, +Y,)=c+d
(b) plim X,,Y,, = cd
(¢c) plim X,/ Y, = c/dford # 0
(d) plim g(X,,) = g(c) for a function g(-)

= Slutsky’s Theorem (U] 0 0 00 00 [0 [0)

181



8. Central Limit Theorem (U OO0 O 0O0)

Univariate Case: X, X5, - - -, X, are mutually independently and identically

distributed as X; ~ (u, o).

Then, . . .
X-EX) X-u

\/ﬁ_a/x/ﬁ

— N(O, 1),

which implies

VX — ) = — > (Xi—p) — N©,0?).
i=1

1
i -
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Multivariate Case: X, X, - - -, X,, are mutually independently and identically
distributed as X; ~ (u, X).
Then, .

7 Y- — NOD)
. Central Limit Theorem (Generalization)

X1, X5, -+, X, are mutually independently and identically distributed as X; ~
(l'la Zl)
Then,
1 n
— X,—u) — N@O,2),
N Z( 1) 0,%)

(1<
2=,}Ln;(522f)-

i=1

where
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10. Definition: Let 8, be a consistent estimator of 6.
Suppose that vn(6, — 6) converges to N(0, %) in distribution.

Then, we say that 6, has an asymptotic distribution ((J [0 00 0 ): N(8,Z/n).

10.1 MLE: Asymptotic Properties

1. Xi,X5,- -+, X, are random variables with density function f(x; 6).
Let 6, be a maximum likelihood estimator of 6.

Then, under some regularity conditions. 0, is a consistent estimator of 6 and

0
the asymptotic distribution of (6 — ) is given by: N(O hm( (n)) J

2. Regularity Conditions:

(a) The domain of X; does not depend on 6.
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(b) There exists at least third-order derivative of f(x;6) with respect to 6, and

their derivatives are finite.

3. Thus, MLE is

(i) consistent[]
(i1) asymptotically normall] and

(ii1) asymptotically efficient.
Proof: The log-likelihood function is given by:
log L(9) = log [ | f(X;:0) = ) log f(X;: )
i=1 i=1

Note that the MLE & satisfies:

dlog L() _ Z": dlog f(X;; 0) _

00 06 0
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X; is a random variable.

On the other hand, the integration of L(6) with respect to x = (xy, x, - -, X,,) is one,

because L(0) is a joint distribution of x;, x,, - - -, x,,. Therefore, we have:

f L(@)dx = 1.

Taking the first-derivative of the above equation on both sides with respect to 8, we

obtain:
OL(9)
00

dx =0,

which is rewritten as:

oL©O) ., [ dlogL(6) _ (0log L(O)\
f — g dx= f — L(Q)dx_E(—ag )=0.

Taking the derivative with respective 6, again (the second-derivative of f L(@)dx =1
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on both sides with respect to 6), we have:

0% log L(6) dlog L(#) dlog L(6)
—L
f gr O+ f 00 00

L@#)dx =0,

which is rewritten as follows:

8% log L(6) _ [ dlog L(F) dlog L(H)
- f g LOdx= f 5 5y LAO)dx.

That is, we can derive the following:

P log L(0)\ _ 0logL(6) dlog L(H)\ _ Alog L(6)y _
& 8606’ )=E( 80 a0 )=V 0 )= 16),
where the second equality holds because of E(%) =0.

1(60) is called Fisher’s information matrix (or simply, information matrix).

Thus, the first-derivative of L(6) is distributed as mean zero and variance 1(0), i.e.,

dlog L(O) Z": dlog f(X;; 0)
00 90

~ (0, 1(0)).

i=1

187



Note that we do not know the distribution of the first-derivative of L(6), because we

do not specify functional form of f(-)

Using the central limit theorem (generalization) shown above, asymptotically we ob-

tain the following distribution:

1 dlog L(6) 0log f(X,,Q)
T TR D, Z — N(0,3),

where ¥ = lim(lI(Q)).

n—oo\p

Let  be the maximu~m likelihood estimator.
0log L(6)

around 6 = 6, we obtain:
00

Linearizing

_ 1 dlogL® 1 alogL(9)+ Bl 6210gL(9)(9_9)
T Nn 00 T \n 00 Vn 0000 ’

where the rest of terms (i.e., the second-order term, the third-order term, ..
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1 dlog L) .

nored, which implies that the distribution of — is asymptotically equiva-

N
1 8*log L) -
lent to that of 7%( - 0).
1 Olog L(6
We have already known the distribution of — 9log L(6) as follows:
\n 00
1 dlog L(6) 1 0*log L(6) 1 8% log L(9) .
—_—— (- = |- 6—-6) — N(,X).
Vn 00 \/_ 06000’ ( ) n 0000 \z ) ©.2)

Note as follows:

1 6% log L(6) . (1., 6*logL(6)
T e JLI?O(ZE(_ 0006’ )) = lim(_ 1(9)) -

1 8% log L(6)
ThUS, (—— W

) \/n(6—-6) asymptotically has the same distribution as X \/n(f—
0).
Therefore,

V(E V@ - 0)) = TV (Vn@ - 9)Y — =.
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Note that £ = ¥’. Thus, we have the asymptotic variance of \/ﬁ(’é— 0) as follows:
V(Vn(@-0) — Tzt =37

Finally, we obtain:

Vi@ -6) — N(@O,Z™.
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11 Consistency and Asymptotic Normality of OLSE

Regression model: y=XB+u, u ~ (0,0°1,).

Consistency:

1. Let 8, = (X’X)"' X"y be the OLS with sample size n.

Consistency: As n is large, 3, converges to f3.
2. Assume the stationarity condition for X, i.e.,
1 !
-X'X — M,,.
n
and no correlation between X and u, i.e.,

1
-X'u — 0.
n
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1 1
3. Note that —-X'X — M,, resultsin (=X'X)"' — M_|.
n n
= Slutsky’s Theorem

(*) Slutsky’s Theorem g(6) — g(6), when § — 6.
4. OLS is given by:
P ’ -1y 1 ’ -1 1 ’
Bn=B+X'X)" Xu=+-XX)"(—X"u).
n n
Therefore,
By — B+M!x0=p

Thus, OLSE is a consistent estimator.
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Asymptotic Normality:
1. Asymptotic Normality of OLSE
VB, —B) — N(0.0*M;!), whenn — oo.
2. Central Limit Theorem: Greenberg and Webster (1983)

Z\, 2y, -+, Z, are mutually independent. Z; is distributed with mean u and

variance 2; fori = 1,2,---,n.

Then, we have the following result:
1 n
— ) (Zi-w) — N(QO,2),
Vi &

where

(1
Z:,}H&(;sz}

i=1
Note that the distribution of Z; is not assumed.
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. Define Z; = x/u;. Then, %; = V(Z) = o?x)x;.

. 2 1is defined as:
1
= lim ( Z o, xi] = o2 lim (—X’X) = 0’M,,,
n—oo | n n—oo \ 11
where
X1
X2
X =
Xn

. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain

the following:

\/_qul = %XU_)N(O O-ZMxx)
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On the other hand, from ,Bn =B+ (X’X)"' X'u, we can rewrite as:

V(B - B) = (%X’X)_l L\/_X’u.

n

v ((%X’X)_l inXu) -E ((%X’X)_l %X’u((%X’X)_] %Xu))

- (%X’X)_l(%X’E(uu’)X)(%X’X)_l
| RN S BN B
- GZ(ZX X) I(ZX X)(;X x)"
— MM M =o*M_].
Therefore,
V(3 -p) — N(0,0”M))
= Asymptotic normality ([ 00 00 O 0 O ) of OLSE

The distribution of u; is not assumed.
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