Econometrics I's Homework

Deadline: April 29, 2020, PM23:59:59

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.
- Send your answer to the email address: tanizaki@econ.osaka-u.ac.jp.
- The subject should be Econome 1 or 計量 1. Otherwise, your mail may go to the **trash box**.
- 1 Consider the following regression model:

$$y_t = \alpha + \beta X_t + u_t, \qquad t = 1, 2, \dots, T,$$

where y_t and X_t denote dependent and independent variables, respectively. T is the sample size. u_1, u_2, \dots, u_T are mutually independently and <u>normally</u> distributed with mean zero and variance σ^2 . α and β are unknown parameters to be estimated. Let $\hat{\beta}$ be the ordinary least squares estimator of β .

- (1) Derive an exact distribution of $\hat{\beta}$, using the moment-generating function.
- (2) Show that $\frac{\hat{\beta} \beta}{s\sqrt{\sum_{t=1}^{T} \omega_t^2}}$ is a t distribution with T-2 degrees of freedom, where $s^2 = \frac{1}{T-2}\sum_{t=1}^{T}(y_t \hat{\alpha} \hat{\beta}X_t)^2$. We may use the fact that the degree of freedom is T-2.