Econometrics I's Homework

Deadline: May 27, 2020, PM23:59:59

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.
- Send your answer to the email address: tanizaki@econ.osaka-u.ac.jp.
- The subject should be Econome 1 or 計量 1. Otherwise, your mail may go to the **trash box**.

Consider the following regression model:

$$y = X\beta + u$$

1

where y, X, β and u denote $T \times 1, T \times k, k \times 1$ and $T \times 1$ matrices. k and T are the number of explanatory variables and the sample size. u_1, u_2, \dots, u_T are mutually independently and **normally** distributed with mean zero and variance σ^2 , i.e., $u \sim N(0, \sigma^2 I_T)$. β are a vector of unknown parameters to be estimated. Let $\hat{\beta}$ be the ordinary least squares estimator of β .

(1) $\hat{\beta}$ is normally distributed with mean β and variance $\sigma^2(X'X)^{-1}$.

Then, show that
$$\frac{(\hat{\beta} - \beta)' X' X(\hat{\beta} - \beta)}{\sigma^2} \sim \chi^2(k).$$

Especially, why is the degree of freedom equal to k?

(2) Show that $\hat{\beta}$ is independent of $s^2 = \frac{1}{T-k}(y-X\hat{\beta})'(y-X\hat{\beta}).$

(3) Show that
$$\frac{(\hat{\beta} - \beta)X'X(\hat{\beta} - \beta)/k}{(y - X\hat{\beta})'(y - X\hat{\beta})/(T - k)} \sim F(k, T - k).$$

(4) Show that
$$\sum_{i=1}^{T} (y_i - \overline{y})^2 = y'(I_T - \frac{1}{T}ii')y$$
, where $y = (y_1, y_2, \dots, y_T)'$ and $i = (1, 1, \dots, 1)'$.

(5) Show that $I_T - \frac{1}{T}ii'$ is symmetric and idempotent.

2 X_1, X_2, \dots, X_n are assumed to be mutually independently, identically and normally distributed with mean μ and variance σ^2 . We want to prove $\frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \chi^2(n-1)$, which is shown in standard statistics textbooks, where $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Define $X = (X_1, X_2, \dots, X_n)'$ and $i = (1, 1, \dots, 1)'$, which are $n \times 1$ vectors. Then, we can rewrite as

follows:

$$X \sim N(\mu i, \sigma^2 I_n).$$

Answer the following questions.

- (6) What is the distribution of $\frac{(X \mu i)'(X \mu i)}{\sigma^2}$?
- (7) Show that

$$(X - \mu i)'(I_n - \frac{1}{n}ii')(X - \mu i) = \sum_{i=1}^n (X_i - \overline{X})^2.$$

(8) Show that $\frac{(X-\mu i)'(I_n-\frac{1}{n}ii')(X-\mu i)}{\sigma^2} \sim \chi^2(n-1)$. (That is, $\frac{\sum_{i=1}^n (X_i-\overline{X})^2}{\sigma^2} \sim \chi^2(n-1)$ is obtained.)