Econometrics I's Homework

Deadline: May 27, 2020, PM23:59:59

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.
- Send your answer to the email address: tanizaki@econ.osaka-u.ac.jp.
- The subject should be Econome 1 or 計量 1 . Otherwise, your mail may go to the trash box.

1 Consider the following regression model:

$$
y=X \beta+u
$$

where y, X, β and u denote $T \times 1, T \times k, k \times 1$ and $T \times 1$ matrices. k and T are the numberof explanatory variables and the sample size. $u_{1}, u_{2}, \cdots, u_{T}$ are mutually independently and normally distributed with mean zero and variance σ^{2}, i.e., $u \sim N\left(0, \sigma^{2} I_{T}\right)$. β are a vector of unknown parameters to be estimated. Let $\hat{\beta}$ be the ordinary least squares estimator of β.
(1) $\hat{\beta}$ is normally distributed with mean β and variance $\sigma^{2}\left(X^{\prime} X\right)^{-1}$.

Then, show that $\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} \sim \chi^{2}(k)$.
Especially, why is the degree of freedom equal to k ?
(2) Show that $\hat{\beta}$ is independent of $s^{2}=\frac{1}{T-k}(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})$.
(3) Show that $\frac{(\hat{\beta}-\beta) X^{\prime} X(\hat{\beta}-\beta) / k}{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) /(T-k)} \sim F(k, T-k)$.
(4) Show that $\sum_{i=1}^{T}\left(y_{i}-\bar{y}\right)^{2}=y^{\prime}\left(I_{T}-\frac{1}{T} i i^{\prime}\right) y$, where $y=\left(y_{1}, y_{2}, \cdots, y_{T}\right)^{\prime}$ and $i=(1,1, \cdots, 1)^{\prime}$.
(5) Show that $I_{T}-\frac{1}{T} i i^{\prime}$ is symmetric and idempotent.
$2 X_{1}, X_{2}, \cdots, X_{n}$ are assumed to be mutually independently, identically and normally distributed with mean μ and variance σ^{2}. We want to prove $\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$, which is shown in standard statistics textbooks, where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.

Define $X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)^{\prime}$ and $i=(1,1, \cdots, 1)^{\prime}$, which are $n \times 1$ vectors. Then, we can rewrite as follows:

$$
X \sim N\left(\mu i, \sigma^{2} I_{n}\right)
$$

Answer the following questions.
(6) What is the distribution of $\frac{(X-\mu i)^{\prime}(X-\mu i)}{\sigma^{2}}$?
(7) Show that

$$
(X-\mu i)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i)=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

(8) Show that $\frac{(X-\mu i)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)(X-\mu i)}{\sigma^{2}} \sim \chi^{2}(n-1)$. (That is, $\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$ is obtained.)

