Econometrics I's Homework

Deadline: June 3, 2020, PM23:59:59

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.
- Send your answer to the email address: tanizaki@econ.osaka-u.ac.jp.
- The subject should be Econome 1 or 計量 1. Otherwise, your mail may go to the trash box.

1 Consider the following regression model:

$$y = X\beta + u = i\beta_1 + X_2\beta_2 + u$$

where $y, X = (i, X_2), \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ and u denote $T \times 1, T \times k, k \times 1$ and $T \times 1$ matrices. k and T are the number of explanatory variables and the sample size. Note that $i = (1, 1, \dots, 1)'$. β_1 is a constant term. β_2 is a $(k-1) \times 1$ vector, and X_2 is a $T \times (k-1)$ matrix. u_1, u_2, \dots, u_T are mutually independently and **normally** distributed with mean zero and variance σ^2 , i.e., $u \sim N(0, \sigma^2 I_T)$. β are a vector of unknown parameters to be estimated. Let $\hat{\beta}$ be the ordinary least squares estimator of β . We define a vector of residuals as $e = y - X\hat{\beta}$.

- (1) Show that Mi = 0 and Me = e, where $M = I_T \frac{1}{T}ii'$.
- (2) Show that $e'e = y'My \hat{\beta}'X'MX\hat{\beta} = y'My \hat{\beta}_2'X_2'MX_2\hat{\beta}_2$, where $\hat{\beta} = \begin{pmatrix} \hat{\beta}_1\\ \hat{\beta}_2 \end{pmatrix}$.

(3) The coefficient of determination is defined as: $R^2 = 1 - \frac{e'e}{y'My}$, where $M = I_T - \frac{1}{T}ii'$.

Show that
$$R^2 = \frac{\beta'_2 X'_2 M X_2 \beta_2}{y' M y}$$

- (4) Let R be an $G \times k$ vector with $G \leq k$. Derive the distribution of $R\hat{\beta}$.
- (5) The null hypothesis is given by H₀: Rβ = r.
 Under the null hypothesis, derive the distribution of Rβ̂.
- (6) We want to test $\beta_2 = 0$. What are G, R and r?

(7) We know that
$$\frac{(R\beta - r)'(R(X'X)^{-1}R')^{-1}(R\beta - r)/G}{e'e/(T-k)} \sim F(G, T-k)$$

Show that
$$\frac{\hat{\beta}_2' X_2' M X_2 \hat{\beta}_2/G}{e'e/(T-k)} \sim F(G, T-k).$$

(8) When we test H_0 : $\beta_2 = 0$, the test statistic is given by $\frac{R^2/(k-1)}{(1-R^2)/(T-k)}$.

Show that
$$\frac{R^2/(k-1)}{(1-R^2)/(T-k)} \sim F(k-1,T-k)$$
.

(9) Suppose that we have the following estimation result:

$$y_i = \begin{array}{ccc} 0.3 & + & 0.65 \\ (3.163) & & (0.240) \end{array} X_i, \qquad s = 1.07, \quad R^2 = 0.786$$

where the sample size is T = 4, () indicates the standard error of the corresponding coefficient estimate, s denote the standard error of regression, and R^2 represents the coefficient of determination. Let β be the coefficient of X_i .

We want to test $\beta = 0$ for the regression model: $y_i = \alpha + \beta X_i + u_i$.

First, using the estimate 0.65 and its standard error of coefficient (i.e., 0.240), test $\beta = 0$.

Second, using R^2 , test $\beta = 0$.

Compare both test statistics and make sure $t^2(T-k) = F(1, T-k)$

I think that you can find various distribution tables in standard introductory statistics textbooks.

 $For \ example, \ see \ \texttt{http://www2.econ.osaka-u.ac.jp/~tanizaki/cv/books/stat3.pdf}, \ pp.251 - .$