Econometrics I's Homework

Deadline: June 17, 2020, PM23:59:59

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.
- Send your answer to the email address: tanizaki@econ.osaka-u.ac.jp.
- The subject should be Econome 1 or 計量 1 . Otherwise, your mail may go to the trash box.
(1) Show that there exists P such that $\Omega=P P^{\prime}$ when Ω is a positive definite matrix.
(3) Consider the following regression model:

$$
y_{t}=x_{t} \beta+u_{t}, \quad u_{t} \sim N\left(0, \sigma^{2} z_{t}^{2}\right), \quad t=1,2, \cdots, T
$$

where $u_{1}, u_{2}, \cdots, u_{T}$ are mutually independent.
What is the variance-covariance matrix, denoted by $\sigma^{2} \Omega$, of $u=\left(u_{1}, u_{2}, \cdots, u_{T}\right)^{\prime}$.
(2) Consider the following regression model:

$$
y_{t}=x_{t} \beta+u_{t}, \quad u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim N\left(0, \sigma^{2}\right), \quad t=1,2, \cdots, T,
$$

where $\epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{T}$ are mutually independent.
What is the variance-covariance matrix, denoted by $\sigma^{2} \Omega$, of $u=\left(u_{1}, u_{2}, \cdots, u_{T}\right)^{\prime}$.
(3) Let b be the best linear unbiased estimator of β under the following regression model:

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} \Omega\right)
$$

where y, X, β and u are $T \times 1, T \times k, k \times 1$ and $T \times 1$.
Derive b.
(4) Consider the regression model in (3). We have two estimators, $\hat{\beta}$ and b, to estimate β.

Obtain $\mathrm{E}(\hat{\beta})$ and $\mathrm{V}(\hat{\beta})$.
Show that $\mathrm{V}(\hat{\beta})-\mathrm{V}(b)$ is a positive definite matrix.

