Econometrics I's Homework

Deadline: June 24, 2020, PM23:59:59

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.
- Send your answer to the email address: tanizaki@econ.osaka-u.ac.jp.
- The subject should be Econome 1 or 計量 1. Otherwise, your mail may go to the trash box.

1 Suppose that X_1, X_2, \dots, X_n are mutually independently and normally distributed with $E(X_i) = \mu$ and $V(X_i) = \sigma^2$ for all $i = 1, 2, \dots, n$.

That is, the density function of X_i is given by:

$$f(x) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

- (1) Obtain the likelihood function of μ and σ^2 .
- (2) Obtain the maximum likelihood estimators of μ and σ^2 , denoted by $\tilde{\mu}$ and $\tilde{\sigma}^2$.
- (3) Obtain the variances of $\tilde{\mu}$ and $\tilde{\sigma}^2$.
- (4) Obtain Fisher's information matrix, denoted by $I(\theta)$ for $\theta = (\mu, \sigma^2)$.
- (5) Compare the variances in (3) and $I(\theta)$ in (4).