Econometrics I's Homework

Deadline: July 22, 2020, PM23:59:59

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.
- Send your answer to the email address: tanizaki@econ.osaka-u.ac.jp.
- The subject should be Econome 1 or 計量 1 . Otherwise, your mail may go to the trash box.

1 Using annual data from 1982 to 2004, we estimate a demand function of bread. The notations are as follows:
$Q_{1 t}$: Purchase volume of bread at time $t(1 \mathrm{~g})$
Y_{t} : Income at time t (Japanese yen, and 2000 base year)
$P_{1 t}$: Price of bread at time t (Japanese yen per 100 g , and 2000 base year)
$P_{2 t}$: Price of rice at time t (Japanese yen per 1 kg , and 2000 base year)
We have estimated the following demand function:

$$
\begin{align*}
\log Q_{1 t}= & \underset{(2.90)}{5.899}+\underset{(4.132)}{0.644} \log Y_{t}-\underset{(13.19)}{1.205} \log P_{1 t}+\underset{(0.242)}{0.00756} \log P_{2 t}, \tag{1}\\
& R^{2}=0.925, \quad \bar{R}^{2}=0.913, \quad \hat{\sigma}^{2}=0.016564^{2}, \quad D W=1.212, \quad \log L=63.87,
\end{align*}
$$

Estimation period: 1982 to 2004,
where the values in the parentheses denote the t-values, R^{2} represents the coefficient of determination, \bar{R}^{2} indicates the adjusted coefficient of determination, $\hat{\sigma}$ is the standard error in the regression equation, $D W$ denotes the Durbin-Watson statistic, and $\log L$ represents the estimate of the log-likelihood function.

Using the residuals in Eq. (1), denoted by \widehat{u}_{t}, we have estimated the following.

$$
\begin{aligned}
\widehat{u}_{t}= & \underset{(1.79)}{0.366} \widehat{u}_{t-1}, \\
& R^{2}=0.131, \quad \bar{R}^{2}=0.131, \quad \hat{\sigma}^{2}=0.014363^{2}, \quad D W=1.793, \quad \log L=62.64, \\
& \text { Estimation period: } 1983 \text { to } 2004 .
\end{aligned}
$$

Moreover, assuming that the error term in Eq. (1) is the first-order autocorrelated and using the maximum likelihood method, we have obtained the following estimation results:

$$
\begin{aligned}
\log Q_{1 t}= & \underset{(2.62)}{6.33}+\underset{(3.38)}{0.613} \log Y_{t}-\underset{(12.7)}{1.223} \log P_{1 t}+\underset{(0.615)}{0.0263} \log P_{2 t} \\
& R^{2}=0.936, \quad \bar{R}^{2}=0.922, \quad \hat{\sigma}^{2}=0.015769^{2}, \quad D W=1.739, \quad \log L=65.58, \\
& \hat{\rho}=\underset{(1.90)}{0.402,} \text { Estimation period: } 1982 \text { to } 2004,
\end{aligned}
$$

where $\hat{\rho}$ denotes the first-order autocorrelation coefficient estimate in the error term, and the value in the parenthesis of $\hat{\rho}$ indicates its t-value.
(1) Using the Lagrange multiplier test, explain how to test the first-order autocorrelation in the error term.
(2) Using the likelihood ratio test, explain how to test the first-order autocorrelation in the error term.
(3) Using the Wald test, explain how to test the first-order autocorrelation in the error term.

