Econometrics I: Solutions of final exam

LU ANG, Hiroki Kato*

August 16, 2020

Contents

1 Question 1

(1)

First we replace β by OLS estimator $\hat{\beta}$ and we can have the following expression:

$$
y=X \hat{\beta}+e
$$

Note that OLSE is the estimator that minimizes the sum of squared error terms, In our case denote as e. Therefore we obtain the expression as follows:

$$
\begin{aligned}
S(\hat{\beta}) & =\sum_{t=1}^{n} e_{i}^{2}=e^{\prime} e=(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})=\left(y-\hat{\beta}^{\prime} y^{\prime}\right)(y-X \hat{\beta}) \\
& =y^{\prime} y-y^{\prime} X^{\prime} \hat{\beta}-\hat{\beta}^{\prime} X^{\prime} y+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta}=y^{\prime} y-2 y^{\prime} X \hat{\beta}+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta}
\end{aligned}
$$

[^0]To minimize $S(\hat{\beta})$ with respect to $\hat{\beta}$, we set the first derivative of $S(\hat{\beta})$ equal to zero:

$$
\frac{\partial S(\hat{\beta})}{\partial \hat{\beta}}=-2 X^{\prime} y+2 X^{\prime} X \hat{\beta}=0
$$

Solve the equation we can obtain the OLS estimator as:

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \tag{1}
\end{equation*}
$$

(2)

In order to calculate the mean and variance of $\hat{\beta}$ we first need to rewrite (1) as:

$$
\begin{align*}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \tag{2}
\end{align*}
$$

Becasue X is nonstochastic Then we take the expectation and variance for both sides:

$$
E(\hat{\beta})=E\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} E(u)=\beta
$$

where $E(u)=0$ by the Assumption

$$
\begin{aligned}
V(\hat{\beta}) & =E\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right)=E\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime}\right) \\
& =E\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} E\left(u u^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} \sigma^{2} I_{T} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

where $E\left(u u^{\prime}\right)=V(u)=\sigma^{2}$ by the Assumption

(3)

The first step is to construct a linear unbiased estimator, $\tilde{\beta}$ since a linear estimator is a function of dependent variable, y, define $\tilde{\beta}=C y$ where C is a $k \times T$ matrix. Then, the expectation of $\tilde{\beta}$ is

$$
E(\tilde{\beta})=E(C(X \beta+u))=C X \beta
$$

If $\tilde{\beta}$ is an unbiased estimator, it must hold that

$$
C X=I_{k}
$$

Next we take the variance of $\tilde{\beta}=C y$

$$
V(\tilde{\beta})=E\left((\tilde{\beta}-\beta)(\tilde{\beta}-\beta)^{\prime}\right)=E\left(C u u^{\prime} C^{\prime}\right)=\sigma^{2} C C^{\prime}
$$

Defining $C=D+\left(X^{\prime} X\right)^{-1} X^{\prime}, V(\tilde{\beta})$ is rewritten as:.

$$
V(\tilde{\beta})=\sigma^{2} C C^{\prime}=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}
$$

Moreover, because $\tilde{\beta}$ is unbiased, we have the following:

$$
C X=I_{k}=\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X=D X+I_{k}
$$

Therefore, we have the following condition:

$$
D X=0
$$

Accordingly, $V(\tilde{\beta})$ is rewritten as:

$$
\begin{align*}
V(\tilde{\beta}) & =\sigma^{2} C C^{\prime}=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}+\sigma^{2} D D^{\prime}=V(\hat{\beta})+\sigma^{2} D D^{\prime} \tag{3}
\end{align*}
$$

Notice that $V(\hat{\beta})-V(\hat{\beta})$ is a positive definite matrix. That is $V(\hat{\beta})-V(\hat{\beta})>$ 0 . Thus $V(\hat{\beta})$ has the smallest variance among all unbiased estimator

(4)

Notice the moment-generating function of $X \sim N(u, \Sigma)$ is given by:

$$
\phi(\theta) \equiv E\left(\exp \left(\theta^{\prime} X\right)\right)=E\left(\exp \left(\theta u+\frac{1}{2} \theta^{\prime} \Sigma \theta\right)\right.
$$

In our case we know that the standard error $u \sim N\left(0, \sigma^{2} I_{T}\right)$. i.e.

$$
\phi\left(\theta_{u}\right) \equiv E\left(\exp \left(\theta_{u}^{\prime} X\right)\right)=E\left(\exp \left(\frac{1}{2} \theta_{u}^{\prime} \theta_{u}\right)\right.
$$

Next in order to derive a distribution of $\hat{\beta}$, we write the moment-generating function of $\hat{\beta}$ as follows:

$$
\begin{aligned}
\phi(\theta) & \equiv E\left(\exp \left(\theta_{\beta}^{\prime} \hat{\beta}\right)\right)=E\left(\exp \left(\theta_{\beta}^{\prime} \beta+\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right. \\
& =\exp \left(\theta_{\beta}^{\prime} \beta\right) E\left(\exp \left(\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right)=\exp \left(\theta_{\beta}^{\prime} \beta\right) \phi_{u}\left(\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =\exp \left(\theta_{\beta}^{\prime} \beta\right) \exp \left(\frac{\sigma^{2}}{2} \theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} \theta_{\beta}\right)=\exp \left(\theta_{\beta}^{\prime} \beta+\frac{\sigma^{2}}{2} \theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} \theta_{\beta}\right)
\end{aligned}
$$

where $\theta_{u}=X\left(X^{\prime} X\right)^{-1} \theta_{\beta}$
This indicate that:

$$
\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)
$$

This expression can be also rewritten as:

$$
\sqrt{T}(\beta-\hat{\beta}) \sim N\left(0, \sigma^{2}\left(\frac{1}{T} X^{\prime} X\right)^{-1}\right)
$$

Here, by weak law of Large Number, We assume that:

$$
\left(\frac{1}{T} X^{\prime} X\right)^{-1} \xrightarrow{p} M_{x x}^{-1}<\infty
$$

Alternatively we can also apply CLT to derive this distribution, in order to do that, first we can rewrite the equation (2) as:

$$
\sqrt{T}(\beta-\hat{\beta})=\left(\frac{1}{T} X^{\prime} X\right)^{-1}\left(\frac{1}{\sqrt{T}} X^{\prime} u\right)
$$

Applying the central limit theorem yields:

$$
\frac{1}{\sqrt{T}} X^{\prime} u \xrightarrow{d} N\left(0, \sigma^{2} M_{x x}\right)
$$

Finally by applying Slutsky theorem we obtain:

$$
\sqrt{T}(\beta-\hat{\beta}) \sim N\left(0, \sigma^{2} M_{x x}^{-1} M_{x x} M_{x x}^{-1}\right)=N\left(0, \sigma^{2} M_{x x}^{-1}\right)
$$

(5)

In order to prove $E\left(s^{2}\right)=\sigma^{2}$, we first substitute $\hat{\beta}$ with $\left(X^{\prime} X\right)^{-1} X^{\prime} y$

$$
\begin{aligned}
y-X \hat{\beta} & =y-X\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right) \\
& =(y-X \beta)+X\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u \\
& =M u
\end{aligned}
$$

where $P=X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is the projection matrix. $M=\left(I_{T}-P\right)$, which maps to vectors of response values to the vector of residual values. Both P and M are idempotent and symmetric. i.e. $P^{2}=P, P^{\prime}=P, M^{2}=M, M^{\prime}=M$

$$
\begin{aligned}
s^{2} & =\frac{1}{T-k}(M u)^{\prime} M u \\
& =\frac{1}{T-k} u^{\prime} M M u \\
& =\frac{1}{T-k} u^{\prime} M u
\end{aligned}
$$

Because $u^{\prime} M u$ is a scalar, thus $\operatorname{tr}\left(u^{\prime} M u\right)=u^{\prime} M u$. Then we can obtain

$$
\begin{aligned}
E\left(s^{2}\right) & =\frac{1}{n} E\left(\operatorname{tr}\left(u^{\prime} M u\right)\right) \\
& =\frac{1}{T-k} E\left(\operatorname{tr}\left(u^{\prime}\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u\right)\right) \\
& =\frac{1}{T-k} E\left(\operatorname{tr}\left(\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u u^{\prime}\right)\right) \\
& =\frac{1}{T-k} \operatorname{tr}\left(\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) E\left(u u^{\prime}\right)\right) \\
& =\frac{1}{T-k} \sigma^{2} \operatorname{tr}\left(\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right) \\
& =\frac{1}{T-k} \sigma^{2}\left(\operatorname{tr}\left(I_{T}\right)-\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right) \\
& =\frac{1}{T-k} \sigma^{2}\left(\operatorname{tr}\left(I_{T}\right)-\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)\right) \\
& =\frac{1}{T-k} \sigma^{2}\left(\operatorname{tr}\left(I_{T}\right)-\operatorname{tr}\left(I_{k}\right)\right. \\
& =\frac{1}{T-k} \sigma^{2}(T-k) \\
& =\sigma^{2}
\end{aligned}
$$

(6)

We apply the Lagrange multiplier to calculate the restricted estimator. In order to minimize $(y-X \beta)^{\prime}(y-X \beta)$ with the restriction $R \beta=r$. We can write the Loss function as:

$$
L=(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})-2 \tilde{\lambda}^{\prime}(R \tilde{\beta}-r)
$$

Here $\tilde{\beta}$ and $\tilde{\lambda}$ are the estimators that minimize L. Then the F.O.C can be obtained:

$$
\begin{aligned}
& \frac{\partial L}{\partial \tilde{\beta}}=-2 X^{\prime}(y-X \tilde{\beta})-2 R^{\prime} \tilde{\lambda}=0 \\
& \frac{\partial L}{\partial \tilde{\lambda}}=-2(R \tilde{\beta}-r)=0
\end{aligned}
$$

Solving the equation for $\tilde{\beta}$ we have following expression:

$$
\begin{equation*}
\tilde{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y+\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda} \tag{4}
\end{equation*}
$$

Multiply R by both side we have following expression:

$$
R \tilde{\beta}=R \hat{\beta}+R\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}
$$

Because we have the restriction $R \tilde{\beta}=r$, we substitute the Left side:

$$
r=R \hat{\beta}+R\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}
$$

Thus we can solve $\tilde{\lambda}$ as:

$$
\tilde{\lambda}=\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta})
$$

Next we substitute $\tilde{\lambda}$ back into equation (4) we can obtain:

$$
\tilde{\beta}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta})
$$

Since $R \hat{\beta} \sim N\left(R \beta, \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)$ and Under the restriction $R \beta=r$ we have:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)}{\sigma^{2}} \sim \chi^{2}(G)
$$

where $\operatorname{rank}(R)=G \leq k$
Also we know that:

$$
\frac{(n-k) s^{2}}{\sigma^{2}}=\frac{\hat{u}^{\prime} \hat{u}}{\sigma^{2}}=\frac{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})}{\sigma^{2}} \sim \chi^{2}(T-k)
$$

Therefore, we have the following distribution:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) / G}{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) /(T-k)} \sim F(G, T-k)
$$

Then, using $\tilde{\beta}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta})$, we can derive that:

$$
\begin{equation*}
\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)=\hat{\beta}-\tilde{\beta} \tag{5}
\end{equation*}
$$

Multiply R by both sides in equation (5) we can have the following expression:

$$
\begin{equation*}
(R \hat{\beta}-r)=R(\hat{\beta}-\tilde{\beta}) \tag{6}
\end{equation*}
$$

Substitute this expression back into the numerator we can obtain:

$$
\begin{aligned}
(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) & =(\hat{\beta}-\tilde{\beta})^{\prime} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R(\hat{\beta}-\tilde{\beta}) \\
& =(\hat{\beta}-\tilde{\beta})^{\prime} X^{\prime} X(\hat{\beta}-\tilde{\beta})
\end{aligned}
$$

Moreover the numerator is represented as follows:

$$
\begin{align*}
(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})= & (y-X \hat{\beta}-X(\tilde{\beta}-\hat{\beta}))^{\prime}(y-X \hat{\beta}-X(\tilde{\beta}-\hat{\beta})) \\
= & (y-X \hat{\beta})^{\prime}(y-X \hat{\beta})+(\tilde{\beta}-\hat{\beta})^{\prime} X^{\prime} X(\tilde{\beta}-\hat{\beta}) \\
& -(y-X \hat{\beta})^{\prime} X(\tilde{\beta}-\hat{\beta})-(\tilde{\beta}-\hat{\beta})^{\prime} X^{\prime}(y-X \hat{\beta}) \\
= & (y-X \hat{\beta})^{\prime}(y-X \hat{\beta})+(\hat{\beta}-\tilde{\beta})^{\prime} X^{\prime} X(\hat{\beta}-\tilde{\beta}) \tag{7}
\end{align*}
$$

where $X^{\prime}(y-X \hat{\beta})=X^{\prime} \hat{u}=0$
Summarizing, we have following representation:

$$
\begin{aligned}
(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) & =(\hat{\beta}-\tilde{\beta})^{\prime} X^{\prime} X(\hat{\beta}-\tilde{\beta}) \\
& =(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})-(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) \\
& =\tilde{u}^{\prime} \tilde{u}-\hat{u}^{\prime} \hat{u}
\end{aligned}
$$

Therefore we have:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) / G}{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) /(T-k)}=\frac{\left(\tilde{u}^{\prime} \tilde{u}-\hat{u}^{\prime} \hat{u}\right) / G}{\hat{u}^{\prime} \hat{u} /(T-k)} \sim F(G, T-k)
$$

The Coefficient of Determination R^{2} for questions (1) and (6) are as follows:

$$
\begin{aligned}
& R_{1}^{2}=1-\frac{\hat{u}^{\prime} \hat{u}}{y^{\prime}\left(I_{T}-\frac{1}{T} i i^{\prime}\right) y} \\
& R_{6}^{2}=1-\frac{\tilde{u}^{\prime} \tilde{u}}{y^{\prime}\left(I_{T}-\frac{1}{T} i i^{\prime}\right) y}
\end{aligned}
$$

Substitute above into $\frac{\left(R_{1}^{2}-R_{6}^{2}\right) / G}{\left(1-R_{1}^{2}\right) /(T-k)}$ we can obtain:

$$
\frac{\left(\frac{\tilde{u}^{\prime} \tilde{u}}{y^{\prime}\left(I_{T}-\frac{1}{T} i i^{\prime}\right) y}-\frac{\hat{u}^{\prime} \hat{u}}{y^{\prime}\left(I_{T}-\frac{1}{T} i i^{\prime}\right) y}\right) / G}{\left(\frac{\tilde{u}^{\prime} \tilde{u}}{y^{\prime}\left(I_{T}-\frac{1}{T} i i^{\prime}\right) y}\right) /(T-k)}=\frac{\left(\tilde{u}^{\prime} \tilde{u}-\hat{u}^{\prime} \hat{u}\right) / G}{\hat{u}^{\prime} \hat{u} /(T-k)}
$$

Which is exactly the same expression as (7), thus we can obtain:

$$
\frac{\left(R_{1}^{2}-R_{6}^{2}\right) / G}{\left(1-R_{1}^{2}\right) /(T-k)} \sim F(G, T-k)
$$

2 Question 2

(9)

The likelihood function is defined as $L(P ; X)=\prod_{i=1}^{n} f\left(X_{i} ; P\right)$ in our case:

$$
\begin{equation*}
L(P ; X)=P^{\sum_{i=1}^{n} X_{i}}(1-P)^{\sum_{i=1}^{n}\left(1-X_{i}\right)} \tag{8}
\end{equation*}
$$

The maximum likelihood estimate of P is the P such that:

$$
\max _{P} L(P ; X) \Longleftrightarrow \max _{P} \log L(P ; X)
$$

Therefore we can take log for both sides and the log likelihood function can be written as:

$$
\begin{equation*}
\log L(P ; X)=\sum_{i=1}^{n} X_{i} \log P+\sum_{i=1}^{n}\left(1-X_{i}\right) \log (1-P) \tag{9}
\end{equation*}
$$

Obtain the first order condition:

$$
\frac{\partial \log L(P ; X)}{\partial P}=\frac{\sum_{i=1}^{n} X_{i}}{P}-\frac{\sum_{i=1}^{n}\left(1-X_{i}\right)}{1-P}=0
$$

Solving the equation we can obtain the MLE estimators as:

$$
\begin{equation*}
\hat{P}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \tag{10}
\end{equation*}
$$

(10)

Recall that Bernoulli distribution has the mean $E(X)=P$ and the variance:

$$
\begin{aligned}
E(X) & =\operatorname{Pr}(X=1) \times 1+\operatorname{Pr}(X=0) \times 0=P \\
V(X) & =E\left(X^{2}\right)-[E(X)]^{2} \\
& =\operatorname{Pr}(X=1) \times 1^{2}+\operatorname{Pr}(X=0) \times 0^{2}-P^{2} \\
& =P(1-P)
\end{aligned}
$$

Then the variance of MLE estimators are calculated as:

$$
\begin{align*}
& E(\hat{P})=E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right)=P \tag{11}\\
& V(\hat{P})=V\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} V\left(X_{i}\right)=\frac{P(1-P)}{n} \tag{12}
\end{align*}
$$

(11)

First, Fisher's information matrix(In our case, it is just a scalar since we only have one estimator) $I(P)$ is given as follows:

$$
\begin{align*}
I(P)=V\left(\frac{\partial \log L(P ; X)}{\partial P}=-E\left(\frac{\partial^{2} \log L(P ; X)}{\partial P^{2}}\right)\right. & =-E\left(-\frac{\sum_{i=1}^{n} X_{i}}{P^{2}}-\frac{n-\sum_{i=1}^{n} X_{i}}{(1-P)^{2}}\right) \\
& =\frac{\sum_{i=1}^{n} E\left(X_{i}\right)}{P^{2}}+\frac{n-\sum_{i=1}^{n} E\left(X_{i}\right)}{(1-P)^{2}} \\
& =\left(\frac{n}{P}+\frac{n}{1-P}\right) \\
& =\frac{n}{P(1-P)} \tag{13}
\end{align*}
$$

Cramer-Rao lower bound which is given as:

$$
I(P)^{-1}=\frac{P(1-P)}{n}
$$

Next we are going to \hat{P} has the smallest variance. Suppose that an unbiased estimator of P as $s(X)$, i.e. $E(s(X))=P$
The expectation of $s(X)$:

$$
E(s(X))=\int s(x) L(P ; x) d x
$$

Differentiating the above with respect to P

$$
\begin{aligned}
\frac{\partial E(s(X))}{\partial P} & =\int s(x) \frac{\partial L(P ; x)}{\partial P} d x=\int s(x) \frac{\partial \log L(P ; x)}{\partial P} L(P ; x) d x \\
& =\operatorname{Cov}\left(s(X), \frac{\partial \log L(P ; X)}{\partial P}\right)
\end{aligned}
$$

In our case, $s(X)$ and P are just scalars, thus:

$$
\begin{aligned}
\left(\frac{\partial E(s(X))}{\partial P}\right)^{2} & =\left(\operatorname{Cov}\left(s(X), \frac{\partial L(P ; x)}{\partial P}\right)\right)^{2}=\rho^{2} V(s(X)) V\left(\frac{\partial \log L(P ; X)}{\partial P}\right) \\
& \geq V(s(X)) V\left(\frac{\partial \log L(P ; X)}{\partial P}\right)
\end{aligned}
$$

where ρ is the correlation coefficient between $s(X)$ and $\frac{\partial \log L(P ; X)}{\partial P}$ and $|\rho| \leq 1$
Therefore, we have the following inequality:

$$
V(s(X)) \geq \frac{\left(\frac{\partial E(s(X))}{\partial P}\right)^{2}}{V\left(\frac{\partial \log L(P ; X)}{\partial P}\right)}
$$

Since $s(X)$ is an unbiased estimator of P. i.e. $E(s(X))=P$
Therefore, we obtain:

$$
\begin{equation*}
V(s(X)) \geq \frac{1}{V\left(\frac{\partial \log L(P ; X)}{\partial P}\right)}=(I(P))^{-1} \tag{14}
\end{equation*}
$$

In our case

$$
(I(P))^{-1}=V(\hat{P})=\frac{P(1-P)}{n}
$$

Thus we have proved \hat{P} has the smallest variance among all unbiased estimator

In order to prove \hat{P} is a consistent estimator of P we need to prove:

$$
\lim _{n \rightarrow \infty} P(|\hat{P}-P|<\epsilon)=1
$$

for any positive ϵ
Recall that Chebyshev's Inequality states as:

$$
P(g(X) \geq k) \leq \frac{E(g(X))}{k}
$$

for $g(X) \geq 0$
In our case let us set $g(X)=(\hat{P}-P)^{2}, e^{2}=k, E(g(X))=V(\hat{P})=\frac{P(1-P)}{n}$ if $n \longrightarrow \infty$,

$$
P\left((\hat{P}-P)^{2} \geq k\right)=P(|\hat{P}-P| \geq \epsilon) \leq \frac{P(1-P)}{n \epsilon^{2}} \rightarrow 0
$$

That is, for any ϵ,

$$
\lim _{n \rightarrow \infty} P(|\hat{P}-P|<\epsilon)=1
$$

Thus we have proved \hat{P} is a consistent estimator of P

(13)

In order to prove the asymptotic distribution. let us first focus on the FOC of our likelihood function:

$$
\frac{\partial \log L(P ; X)}{\partial P}=\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; P\right)}{\partial P}=0
$$

Applying Central Limit Theorem as follows:

$$
\frac{\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; P\right)}{\partial P}-E\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; P\right)}{\partial P}\right)}{\sqrt{V\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; P\right)}{\partial P}\right)}}=\frac{\frac{1}{n} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P}-E\left(\frac{1}{n} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P}\right)}{\sqrt{V\left(\frac{1}{n} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P}\right)}}
$$

in our case:

$$
E\left(\frac{1}{n} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P}\right)=0
$$

and

$$
V\left(\frac{1}{n} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P}\right)=\frac{1}{n^{2}} I(\theta)
$$

Thus, the asymptotic distribution of $\frac{1 \partial \log L\left(X_{i} ; P\right)}{\partial P}$ is given by:
$\sqrt{n}\left(\frac{1}{n} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P}-E\left(\frac{1}{n} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P}\right)\right)=\frac{1}{\sqrt{n}} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P} \longrightarrow N(0, \Sigma)$
where, according to equation (13):

$$
\Sigma=V\left(\frac{1}{\sqrt{n}} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P}\right)=\frac{1}{n} I(P)=\frac{1}{P(1-P)}
$$

That is,

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P} \longrightarrow N(0, \Sigma)
$$

Now, replacing P by \tilde{P}, consider the asymptotic distribution of

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{P} ; X)}{\partial P}
$$

which is expanded around $\tilde{P}=P$ as follows:

$$
0=\frac{1}{\sqrt{n}} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P} \approx \frac{1}{\sqrt{n}} \frac{\partial \log L(P ; X)}{\partial P}+\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(P ; X)}{\partial P^{2}}(\tilde{P}-P)
$$

Therefore,

$$
\begin{equation*}
-\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(P ; X)}{\partial P^{2}}(\tilde{P}-P) \approx \frac{1}{\sqrt{n}} \frac{\partial \log L\left(X_{i} ; P\right)}{\partial P} \longrightarrow N(0, \Sigma) \tag{15}
\end{equation*}
$$

Then the expression can be rewritten as:

$$
\begin{equation*}
\sqrt{n}(\tilde{P}-P) \approx\left(-\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(P ; X)}{\partial P^{2}}\right)^{-1}\left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{P} ; X)}{\partial P}\right) \tag{16}
\end{equation*}
$$

Note that, Using the law of large number

$$
\begin{align*}
-\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(P ; X)}{\partial P^{2}} \longrightarrow & \lim _{n \rightarrow \infty} \frac{1}{n}\left(-E\left(\frac{\partial^{2} \log L(P ; X)}{\partial P^{2}}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(V\left(\frac{\partial \log L(P ; X)}{\partial P}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} I(P)=\frac{1}{P(1-P)}=\Sigma \tag{17}
\end{align*}
$$

Combining the result of $(15),(16)(17)$, and applying slutsky's theorem we can obtain:

$$
\begin{aligned}
\sqrt{n}(\tilde{P}-P) \approx\left(-\frac{1}{\sqrt{n}} \frac{\partial^{2} \log L(P ; X)}{\partial P^{2}}\right)^{-1}\left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{P} ; X)}{\partial P}\right) \longrightarrow & N\left(0, \Sigma^{-1} \Sigma \Sigma^{-1}\right) \\
& =N\left(0, \Sigma^{-1}\right) \\
& =N(0, P(1-P))
\end{aligned}
$$

The Wald test states:

$$
h(\hat{\theta})\left(R_{\theta}(I(\theta))^{-1} R_{\theta}^{\prime}\right)^{-1} h(\hat{\theta})^{\prime} \rightarrow \chi^{2}(G)
$$

Furthermore, as $n \longrightarrow \infty$ we have $R_{\hat{\theta}} \rightarrow R_{\theta}$ and $I(\hat{\theta}) \rightarrow I(\hat{\theta})$

$$
h(\hat{\theta})\left(R_{\hat{\theta}}(I(\hat{\theta}))^{-1} R_{\hat{\theta}}^{\prime}\right)^{-1} h(\hat{\theta})^{\prime} \rightarrow \chi^{2}(G)
$$

where $h(\theta)=0$ is the null hypothesis and $R_{\theta}=\frac{\partial \log L(\theta)}{\partial \theta}$
In our case $h(P)=P-0.5=0, R_{P}=1, I(P)^{-1}=\frac{P(1-P)}{n}, G=1$
Then our test statistic:

$$
h(\hat{P})\left(R_{\hat{P}}(I(\hat{P}))^{-1} R_{\hat{P}}^{\prime}\right)^{-1} h(\hat{P})^{\prime}=\frac{n}{\hat{P}(1-\hat{P})}(\hat{P}-0.5)^{2} \sim \chi^{2}(1)
$$

where $\hat{P}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is our MLE obtain in question (9)
Compare the test statistic, if it is greater than the critical value $\chi^{2}(1)$ we should reject the null hypothesis, otherwise we can not reject the null hypothesis

(15)

Likelihood Ratio Test states:

$$
L R=-2(\log L(\tilde{\theta})-\log L(\hat{\theta})) \longrightarrow \chi^{2}(G)
$$

In our case under the null hypothesis: $\mathrm{h}(\mathrm{P})=\mathrm{P}-0.5=0$

$$
h(\tilde{P})=0
$$

is always satisfied. i.e. $\tilde{P}=0.5$
the test statistic is as follows:

$$
\begin{aligned}
-2(\log L(\tilde{P})-\log L(\hat{P}))= & -2\left[\sum_{i=1}^{n} X_{i} \log \tilde{P}+\sum_{i=1}^{n}\left(1-X_{i}\right) \log (1-\tilde{P})\right. \\
& \left.-\sum_{i=1}^{n} X_{i} \log \hat{P}-\sum_{i=1}^{n}\left(1-X_{i}\right) \log (1-\tilde{P})\right] \\
= & -2\left[\sum_{i=1}^{n} X_{i} \log \tilde{P} / \hat{P}+\sum_{i=1}^{n}\left(1-X_{i}\right) \log (1-\tilde{P}) /(1-\hat{P})\right]
\end{aligned}
$$

substitute $\tilde{P}=0.5$ and $\hat{P}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ into LR we can obtain our test statistic. Comparing the test statistic, if it is greater than the critical value $\chi^{2}(1)$ we should reject the null hypothesis, otherwise we can not reject the null hypothesis

3 Question 3

(16)

The OLSE is now given by $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$. Substituting the original regression equation into y yields

$$
\begin{equation*}
\hat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \tag{18}
\end{equation*}
$$

Taking expectation on both sides gives

$$
\begin{equation*}
E(\hat{\beta})=\beta+E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u\right]=\beta+E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} E(u \mid X)\right] . \tag{19}
\end{equation*}
$$

Note that the second equality comes from the law of iterated expectation. Since X is correlated with $u, E(u \mid X) \neq 0$. Thus, the second term of equation (??) no longer vanishes. The OLSE is biased estimator.
Let X_{t} be $k \times 1$ vector such that $X=\left(X_{1}^{\prime}, \cdots, X_{T}^{\prime}\right)$ We reformulate (18) as follows;

$$
\begin{equation*}
\hat{\beta}=\beta+\left(\frac{1}{T} \sum_{t} X_{t} X_{t}^{\prime}\right)^{-1}\left(\frac{1}{T} \sum_{t} X_{t} u_{t}\right) \tag{20}
\end{equation*}
$$

Assume $E\left(X_{t} X_{t}^{\prime}\right)=M_{x x}$.
By the weak law of large numbers (WLLN) and Slutzky's theorem, we have

$$
\begin{equation*}
\operatorname{plim}_{T \rightarrow \infty}\left(\frac{1}{T} \sum_{t} X_{t} X_{t}^{\prime}\right)^{-1}=M_{x x}^{-1} \tag{21}
\end{equation*}
$$

Since X is correlated with $u, E\left(X_{t} u_{t}\right)=M_{x u} \neq 0$. By the WLLN, we have

$$
\begin{equation*}
\operatorname{plim}_{T \rightarrow \infty}\left(\frac{1}{T} \sum_{t} X_{t} u_{t}\right)=M_{x u} . \tag{22}
\end{equation*}
$$

where γ is $k \times 1$ vector. Taking probability limit on both sides of (20) yields $\operatorname{plim}_{T \rightarrow \infty} \hat{\beta}=\beta+M_{x x} M_{x u}$. Thus, the OLSE is inconsistent.

Let Z_{t} be $k \times 1$ vector such that $Z=\left(Z_{1}^{\prime}, \cdots, Z_{T}^{\prime}\right)$. We assume that:
Assumption 1. Z_{t} is uncorrelated with u_{t},i.e. $\operatorname{Cov}\left(Z_{t}, u_{t}\right)=E\left(Z_{t} u_{t}\right)=0$; Assumption 2. Z_{t} is correlated with X_{t}, i.e. $E\left(Z_{t} X_{t}^{\prime}\right)=M_{z x}$.

We reformulate the original regression equation as follows;

$$
\begin{equation*}
\frac{Z^{\prime} y}{T}=\frac{Z^{\prime} X \beta}{T}+\frac{Z^{\prime} u}{T} . \tag{23}
\end{equation*}
$$

Taking probability limit on both sides yields

$$
\begin{equation*}
\operatorname{plim}_{T \rightarrow \infty}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t} y_{t}\right)=\operatorname{plim}_{T \rightarrow \infty}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t} X_{t}^{\prime}\right) \beta+\operatorname{plim}_{T \rightarrow \infty}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t} u_{t}\right) . \tag{24}
\end{equation*}
$$

By the assumption 1 and 2, and the WLLN, we have

$$
\begin{equation*}
\operatorname{plim}_{T \rightarrow \infty}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t} X_{t}^{\prime}\right)^{-1} \operatorname{plim}_{T \rightarrow \infty}\left(\frac{1}{T} \sum_{t} Z_{t} y_{t}\right)=\beta \tag{25}
\end{equation*}
$$

This implies that the consistent estimator of β is

$$
\begin{equation*}
\beta_{i v}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y \tag{26}
\end{equation*}
$$

which is called instrumental variable estimator.

Substituting (??) into the regression equation yields

$$
\begin{equation*}
\beta_{i v}=\beta+\left(\sum_{t} Z_{t} X_{T}^{\prime}\right)^{-1} \sum_{t} Z_{t} u_{t} . \tag{27}
\end{equation*}
$$

We reformulate this equation as follows;

$$
\begin{equation*}
\sqrt{T}\left(\beta_{i v}-\beta\right)=\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t} X_{t}^{\prime}\right)^{-1}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} Z_{t} u_{t}\right) \tag{28}
\end{equation*}
$$

Using the WLLN and Slutzky's theorem, we have

$$
\begin{equation*}
\operatorname{plim}_{T \rightarrow \infty}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t} X_{t}^{\prime}\right)^{-1}=M_{z x}^{-1} \tag{29}
\end{equation*}
$$

This comes from the assumption 2. We derive the asymptotic distribution of $T^{-1 / 2} \sum_{t} Z_{t} u_{t}$. Define $\bar{Z}_{t}=Z_{t} u_{t}$. The assumption 1 leads to $E\left(\bar{Z}_{t}\right)=0$, and $\operatorname{Var}\left(\bar{Z}_{t}\right)=E\left(u_{t}^{2} Z_{t} Z_{t}^{\prime}\right)=\sigma^{2} M_{z z}$. That is, $\lim _{T \rightarrow \infty}\left((1 / T) \sum_{t} \operatorname{Var}\left(\bar{Z}_{t}\right)\right)=$ $\sigma^{2} M_{z z}$. Applying the general version of central limit theorem yields

$$
\begin{equation*}
\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \bar{Z}_{t} \xrightarrow{d} N\left(0, \sigma^{2} M_{z z}\right) . \tag{30}
\end{equation*}
$$

Using (??) and (??), we obtain

$$
\begin{equation*}
\sqrt{T}\left(\beta_{i v}-\beta\right) \xrightarrow{d} N\left(0, \sigma^{2} M_{z x}^{-1} M_{z z}\left(M_{z x}^{\prime}\right)^{-1}\right) . \tag{31}
\end{equation*}
$$

[^0]: *If you have any errors in handouts and materials, please contact me via lvang12@hotmail.com or vge008kh@student.econ.osaka-u.ac.jp. Room 503.

