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1 Question 1

(1)

First we replace β by OLS estimator β̂ and we can have the following ex-
pression:

y = Xβ̂ + e

Note that OLSE is the estimator that minimizes the sum of squared error
terms, In our case denote as e. Therefore we obtain the expression as follows:

S(β̂) =
n∑
t=1

e2i = e′e = (y −Xβ̂)′(y −Xβ̂) = (y − β̂′y′)(y −Xβ̂)

= y′y − y′X ′β̂ − β̂′X ′y + β̂′X ′Xβ̂ = y′y − 2y′Xβ̂ + β̂′X ′Xβ̂

∗If you have any errors in handouts and materials, please contact me via
lvang12@hotmail.com or vge008kh@student.econ.osaka-u.ac.jp. Room 503.
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To minimize S(β̂) with respect to β̂, we set the first derivative of S(β̂) equal
to zero:

∂S(β̂)

∂β̂
= −2X ′y + 2X ′Xβ̂ = 0

Solve the equation we can obtain the OLS estimator as:

β̂ = (X ′X)−1X ′y (1)

(2)

In order to calculate the mean and variance of β̂ we first need to rewrite (1)
as:

β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′(Xβ + u)

= (X ′X)−1X ′Xβ + (X ′X)−1X ′u

= β + (X ′X)−1X ′u (2)

Becasue X is nonstochastic Then we take the expectation and variance for
both sides:

E(β̂) = E(β + (X ′X)−1X ′u) = β + (X ′X)−1X ′E(u) = β

where E(u) = 0 by the Assumption

2



[Econometrics] Lu Ang

V (β̂) = E((β̂ − β)(β̂ − β)′) = E((X ′X)−1X ′u((X ′X)−1X ′u)′)

= E((X ′X)−1X ′uu′X(X ′X)−1)

= (X ′X)−1X ′E(uu′)X(X ′X)−1

= (X ′X)−1X ′σ2ITX(X ′X)−1

= σ2(X ′X)−1X ′X(X ′X)−1

= σ2(X ′X)−1

where E(uu′) = V (u) = σ2 by the Assumption

(3)

The first step is to construct a linear unbiased estimator, β̃ Since a linear
estimator is a function of dependent variable, y, define β̃ = Cy where C is a
k × T matrix. Then, the expectation of β̃ is

E(β̃) = E(C(Xβ + u)) = CXβ

If β̃ is an unbiased estimator, it must hold that

CX = Ik

Next we take the variance of β̃ = Cy

V (β̃) = E((β̃ − β)(β̃ − β)′) = E(Cuu′C ′) = σ2CC ′

Defining C = D + (X ′X)−1X ′, V (β̃) is rewritten as:.

V (β̃) = σ2CC ′ = σ2(D + (X ′X)−1X ′)(D + (X ′X)−1X ′)′

3
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Moreover, because β̃ is unbiased, we have the following:

CX = Ik = (D + (X ′X)−1X ′)X = DX + Ik

Therefore, we have the following condition:

DX = 0

Accordingly, V (β̃) is rewritten as:

V (β̃) = σ2CC ′ = σ2(D + (X ′X)−1X ′)(D + (X ′X)−1X ′)′

= σ2(X ′X)−1 + σ2DD′ = V (β̂) + σ2DD′ (3)

Notice that V (β̂)−V (β̂) is a positive definite matrix. That is V (β̂)−V (β̂) >
0. Thus V (β̂) has the smallest variance among all unbiased estimator

(4)

Notice the moment-generating function of X ∼ N(u,Σ) is given by:

φ(θ) ≡ E(exp(θ′X)) = E(exp(θu+
1

2
θ′Σθ)

In our case we know that the standard error u ∼ N(0, σ2IT ). i.e.

φ(θu) ≡ E(exp(θ′uX)) = E(exp(
1

2
θ′uθu)

Next in order to derive a distribution of β̂, we write the moment-generating
function of β̂ as follows:
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φ(θ) ≡ E(exp(θ′ββ̂)) = E(exp(θ′ββ + θ′β(X ′X)−1X ′u)

= exp(θ′ββ)E(exp(θ′β(X ′X)−1X ′u)) = exp(θ′ββ)φu(θ
′
β(X ′X)−1X ′)

= exp(θ′ββ)exp(
σ2

2
θ′β(X ′X)−1θβ) = exp(θ′ββ +

σ2

2
θ′β(X ′X)−1θβ)

where θu = X(X ′X)−1θβ

This indicate that:
β̂ ∼ N(β, σ2(X ′X)−1)

This expression can be also rewritten as:

√
T (β − β̂) ∼ N(0, σ2(

1

T
X ′X)−1)

Here, by weak law of Large Number, We assume that:

(
1

T
X ′X)−1

p→M−1
xx <∞

Alternatively we can also apply CLT to derive this distribution, in order
to do that, first we can rewrite the equation (2) as:

√
T (β − β̂) = (

1

T
X ′X)−1(

1√
T
X ′u)

Applying the central limit theorem yields:

1√
T
X ′u

d→ N(0, σ2Mxx)

Finally by applying Slutsky theorem we obtain:
√
T (β − β̂) ∼ N(0, σ2M−1

xxMxxM
−1
xx ) = N(0, σ2M−1

xx )
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(5)

In order to prove E(s2) = σ2, we first substitute β̂ with (X ′X)−1X ′y

y −Xβ̂ = y −X(β + (X ′X)−1X ′u)

= (y −Xβ) +X(X ′X)−1X ′u

= (IT −X(X ′X)−1X ′)u

= Mu

where P = X(X ′X)−1X ′ is the projection matrix. M = (IT−P ), which maps
to vectors of response values to the vector of residual values. Both P and M
are idempotent and symmetric. i.e. P 2 = P ,P ′ = P ,M2 = M ,M ′ = M

s2 =
1

T − k
(Mu)′Mu

=
1

T − k
u′MMu

=
1

T − k
u′Mu
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Because u′Mu is a scalar, thus tr(u′Mu) = u′Mu. Then we can obtain

E(s2) =
1

n
E(tr(u′Mu))

=
1

T − k
E(tr(u′(IT −X(X ′X)−1X ′)u))

=
1

T − k
E(tr((IT −X(X ′X)−1X ′)uu′))

=
1

T − k
tr((IT −X(X ′X)−1X ′)E(uu′))

=
1

T − k
σ2tr((IT −X(X ′X)−1X ′))

=
1

T − k
σ2(tr(IT )− tr(X(X ′X)−1X ′))

=
1

T − k
σ2(tr(IT )− tr((X ′X)−1X ′X))

=
1

T − k
σ2(tr(IT )− tr(Ik)

=
1

T − k
σ2(T − k)

= σ2

(6)

We apply the Lagrange multiplier to calculate the restricted estimator. In
order to minimize (y −Xβ)′(y −Xβ) with the restriction Rβ = r. We can
write the Loss function as:

L = (y −Xβ̃)′(y −Xβ̃)− 2λ̃′(Rβ̃ − r)

Here β̃ and λ̃ are the estimators that minimize L. Then the F.O.C can be
obtained:

∂L

∂β̃
= −2X ′(y −Xβ̃)− 2R′λ̃ = 0

∂L

∂λ̃
= −2(Rβ̃ − r) = 0
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Solving the equation for β̃ we have following expression:

β̃ = (X ′X)−1X ′y + (X ′X)−1R′λ̃ = β̂ + (X ′X)−1R′λ̃ (4)

Multiply R by both side we have following expression:

Rβ̃ = Rβ̂ +R(X ′X)−1R′λ̃

Because we have the restriction Rβ̃ = r , we substitute the Left side:

r = Rβ̂ +R(X ′X)−1R′λ̃

Thus we can solve λ̃ as:

λ̃ = (R(X ′X)−1R′)−1(r −Rβ̂)

Next we substitute λ̃ back into equation (4) we can obtain:

β̃ = β̂ + (X ′X)−1R′(R(X ′X)−1R′)−1(r −Rβ̂)

(7)

Since Rβ̂ ∼ N(Rβ, σ2R(X ′X)−1R′) and Under the restriction Rβ = r we
have:

(Rβ̂ − r)′(R(X ′X)−1R′)−1(Rβ̂ − r)
σ2

∼ χ2(G)

where rank(R) = G ≤ k

Also we know that:

(n− k)s2

σ2
=
û′û

σ2
=

(y −Xβ̂)′(y −Xβ̂)

σ2
∼ χ2(T − k)
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Therefore, we have the following distribution:

(Rβ̂ − r)′(R(X ′X)−1R′)−1(Rβ̂ − r)/G
(y −Xβ̂)′(y −Xβ̂)/(T − k)

∼ F (G, T − k)

Then, using β̃ = β̂ + (X ′X)−1R′(R(X ′X)−1R′)−1(r − Rβ̂), we can derive
that:

(X ′X)−1R′(R(X ′X)−1R′)−1(Rβ̂ − r) = β̂ − β̃ (5)

Multiply R by both sides in equation (5) we can have the following expression:

(Rβ̂ − r) = R(β̂ − β̃) (6)

Substitute this expression back into the numerator we can obtain:

(Rβ̂ − r)′(R(X ′X)−1R′)−1(Rβ̂ − r) = (β̂ − β̃)′R′(R(X ′X)−1R′)−1R(β̂ − β̃)

= (β̂ − β̃)′X ′X(β̂ − β̃)

Moreover the numerator is represented as follows:

(y −Xβ̃)′(y −Xβ̃) = (y −Xβ̂ −X(β̃ − β̂))′(y −Xβ̂ −X(β̃ − β̂))

= (y −Xβ̂)′(y −Xβ̂) + (β̃ − β̂)′X ′X(β̃ − β̂)

− (y −Xβ̂)′X(β̃ − β̂)− (β̃ − β̂)′X ′(y −Xβ̂)

= (y −Xβ̂)′(y −Xβ̂) + (β̂ − β̃)′X ′X(β̂ − β̃) (7)

where X ′(y −Xβ̂) = X ′û = 0

Summarizing, we have following representation:

(Rβ̂ − r)′(R(X ′X)−1R′)−1(Rβ̂ − r) = (β̂ − β̃)′X ′X(β̂ − β̃)

= (y −Xβ̃)′(y −Xβ̃)− (y −Xβ̂)′(y −Xβ̂)

= ũ′ũ− û′û
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Therefore we have:

(Rβ̂ − r)′(R(X ′X)−1R′)−1(Rβ̂ − r)/G
(y −Xβ̂)′(y −Xβ̂)/(T − k)

=
(ũ′ũ− û′û)/G

û′û/(T − k)
∼ F (G, T − k)

(8)

The Coefficient of Determination R2 for questions (1) and (6) are as follows:

R2
1 = 1− û′û

y′(IT − 1
T
ii′)y

R2
6 = 1− ũ′ũ

y′(IT − 1
T
ii′)y

Substitute above into
(R2

1 −R2
6)/G

(1−R2
1)/(T − k)

we can obtain:

( ũ′ũ
y′(IT− 1

T
ii′)y
− û′û

y′(IT− 1
T
ii′)y

)/G

( ũ′ũ
y′(IT− 1

T
ii′)y

)/(T − k)
=

(ũ′ũ− û′û)/G

û′û/(T − k)

Which is exactly the same expression as (7), thus we can obtain:

(R2
1 −R2

6)/G

(1−R2
1)/(T − k)

∼ F (G, T − k)

2 Question 2

(9)

The likelihood function is defined as L(P ;X) =
∏n

i=1 f(Xi;P ) in our case:

L(P ;X) = P
∑n

i=1Xi(1− P )
∑n

i=1(1−Xi) (8)
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The maximum likelihood estimate of P is the P such that:

max
P

L(P ;X) ⇐⇒ max
P

logL(P ;X)

Therefore we can take log for both sides and the log likelihood function can
be written as:

logL(P ;X) =
n∑
i=1

XilogP +
n∑
i=1

(1−Xi)log(1− P ) (9)

Obtain the first order condition:

∂logL(P ;X)

∂P
=

∑n
i=1Xi

P
−
∑n

i=1(1−Xi)

1− P
= 0

Solving the equation we can obtain the MLE estimators as:

P̂ =
1

n

n∑
i=1

Xi (10)

(10)

Recall that Bernoulli distribution has the mean E(X) = P and the variance:

E(X) = Pr(X = 1)× 1 + Pr(X = 0)× 0 = P

V (X) = E(X2)− [E(X)]2

= Pr(X = 1)× 12 + Pr(X = 0)× 02 − P 2

= P (1− P )
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Then the variance of MLE estimators are calculated as:

E(P̂ ) = E(
1

n

n∑
i=1

Xi) =
1

n

n∑
i=1

E(Xi) = P (11)

V (P̂ ) = V (
1

n

n∑
i=1

Xi) =
1

n2

n∑
i=1

V (Xi) =
P (1− P )

n
(12)

(11)

First, Fisher’s information matrix(In our case, it is just a scalar since we only
have one estimator) I(P ) is given as follows:

I(P ) = V (
∂logL(P ;X)

∂P
= −E(

∂2logL(P ;X)

∂P 2
) = −E(−

∑n
i=1Xi

P 2
− n−

∑n
i=1Xi

(1− P )2
)

=

∑n
i=1E(Xi)

P 2
+
n−

∑n
i=1E(Xi)

(1− P )2

= (
n

P
+

n

1− P
)

=
n

P (1− P )
(13)

Cramer-Rao lower bound which is given as:

I(P )−1 =
P (1− P )

n

Next we are going to P̂ has the smallest variance. Suppose that an unbiased
estimator of P as s(X), i.e. E(s(X)) = P
The expectation of s(X):

E(s(X)) =

∫
s(x)L(P ;x)dx

12
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Differentiating the above with respect to P

∂E(s(X))

∂P
=

∫
s(x)

∂L(P ;x)

∂P
dx =

∫
s(x)

∂logL(P ;x)

∂P
L(P ;x)dx

= Cov(s(X),
∂logL(P ;X)

∂P
)

In our case, s(X) and P are just scalars, thus:

(
∂E(s(X))

∂P
)2 = (Cov(s(X),

∂L(P ;x)

∂P
))2 = ρ2V (s(X))V (

∂logL(P ;X)

∂P
)

≥ V (s(X))V (
∂logL(P ;X)

∂P
)

where ρ is the correlation coefficient between s(X) and
∂logL(P ;X)

∂P
and

|ρ| ≤ 1
Therefore, we have the following inequality:

V (s(X)) ≥
(∂E(s(X))

∂P
)2

V (∂logL(P ;X)
∂P

)

Since s(X) is an unbiased estimator of P . i.e. E(s(X)) = P
Therefore, we obtain:

V (s(X)) ≥
1

V (∂logL(P ;X)
∂P

)
= (I(P ))−1 (14)

In our case

(I(P ))−1 = V (P̂ ) =
P (1− P )

n

Thus we have proved P̂ has the smallest variance among all unbiased esti-
mator
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(12)

In order to prove P̂ is a consistent estimator of P we need to prove:

lim
n→∞

P (|P̂ − P | < ε) = 1

for any positive ε

Recall that Chebyshev’s Inequality states as:

P (g(X) ≥ k) ≤ E(g(X))

k

for g(X) ≥ 0

In our case let us set g(X) = (P̂−P )2, e2 = k, E(g(X)) = V (P̂ ) =
P (1− P )

n
if n −→∞,

P ((P̂ − P )2 ≥ k) = P (|P̂ − P | ≥ ε) ≤
P (1− P )

nε2
→ 0

That is, for any ε,
lim
n→∞

P (|P̂ − P | < ε) = 1

Thus we have proved P̂ is a consistent estimator of P

(13)

In order to prove the asymptotic distribution. let us first focus on the FOC
of our likelihood function:

∂logL(P ;X)

∂P
=

n∑
i=1

∂logf(Xi;P )

∂P
= 0

Applying Central Limit Theorem as follows:

1

n

∑n
i=1

∂logf(Xi;P )

∂P
− E(

1

n

∑n
i=1

∂logf(Xi;P )

∂P
)√

V (
1

n

∑n
i=1

∂logf(Xi;P )

∂P
)

=

1

n

∂logL(Xi;P )

∂P
− E(

1

n

∂logL(Xi;P )

∂P
)√

V (
1

n

∂logL(Xi;P )

∂P
)

14
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in our case:

E(
1

n

∂logL(Xi;P )

∂P
) = 0

and

V (
1

n

∂logL(Xi;P )

∂P
) =

1

n2
I(θ)

Thus, the asymptotic distribution of
1

n

∂logL(Xi;P )

∂P
is given by:

√
n

(
1

n

∂logL(Xi;P )

∂P
− E(

1

n

∂logL(Xi;P )

∂P
)

)
=

1√
n

∂logL(Xi;P )

∂P
−→ N(0,Σ)

where, according to equation (13):

Σ = V (
1√
n

∂logL(Xi;P )

∂P
) =

1

n
I(P ) =

1

P (1− P )

That is,
1√
n

∂logL(Xi;P )

∂P
−→ N(0,Σ)

Now, replacing P by P̃ , consider the asymptotic distribution of

1√
n

∂logL(P̃ ;X)

∂P

which is expanded around P̃ = P as follows:

0 =
1√
n

∂logL(Xi;P )

∂P
≈ 1√

n

∂logL(P ;X)

∂P
+

1√
n

∂2logL(P ;X)

∂P 2
(P̃ − P )

Therefore,

− 1√
n

∂2logL(P ;X)

∂P 2
(P̃ − P ) ≈ 1√

n

∂logL(Xi;P )

∂P
−→ N(0,Σ) (15)

Then the expression can be rewritten as:

√
n(P̃ − P ) ≈ (− 1√

n

∂2logL(P ;X)

∂P 2
)−1(

1√
n

∂logL(P̃ ;X)

∂P
) (16)
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Note that, Using the law of large number

− 1√
n

∂2logL(P ;X)

∂P 2
−→ lim

n→∞

1

n

(
−E(

∂2logL(P ;X)

∂P 2
)

)

= lim
n→∞

1

n

(
V (
∂logL(P ;X)

∂P
)

)
= lim

n→∞

1

n
I(P ) =

1

P (1− P )
= Σ (17)

Combining the result of (15),(16)(17), and applying slutsky’s theorem we can
obtain:

√
n(P̃ − P ) ≈ (− 1√

n

∂2logL(P ;X)

∂P 2
)−1(

1√
n

∂logL(P̃ ;X)

∂P
) −→N(0,Σ−1ΣΣ−1)

= N(0,Σ−1)

= N(0, P (1− P ))

(14)

The Wald test states:

h(θ̂)(Rθ(I(θ))−1R′θ)
−1h(θ̂)′ → χ2(G)

Furthermore, as n −→∞ we have Rθ̂ → Rθ and I(θ̂)→ I(θ̂)

h(θ̂)(Rθ̂(I(θ̂))−1R′
θ̂
)−1h(θ̂)′ → χ2(G)

where h(θ) = 0 is the null hypothesis and Rθ =
∂logL(θ)

∂θ

In our case h(P ) = P − 0.5 = 0, RP = 1, I(P )−1 = P (1−P )
n

, G = 1

Then our test statistic:

16
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h(P̂ )(RP̂ (I(P̂ ))−1R′
P̂

)−1h(P̂ )′ =
n

P̂ (1− P̂ )
(P̂ − 0.5)2 ∼ χ2(1)

where P̂ = 1
n

∑n
i=1Xi is our MLE obtain in question (9)

Compare the test statistic, if it is greater than the critical value χ2(1) we
should reject the null hypothesis, otherwise we can not reject the null hy-
pothesis

(15)

Likelihood Ratio Test states:

LR = −2(logL(θ̃)− logL(θ̂)) −→ χ2(G)

In our case under the null hypothesis: h(P)=P-0.5=0

h(P̃ ) = 0

is always satisfied. i.e. P̃ = 0.5

the test statistic is as follows:

−2(logL(P̃ )− logL(P̂ )) = −2[
n∑
i=1

XilogP̃ +
n∑
i=1

(1−Xi)log(1− P̃ )

−
n∑
i=1

XilogP̂ −
n∑
i=1

(1−Xi)log(1− P̃ )]

= −2[
n∑
i=1

XilogP̃ /P̂ +
n∑
i=1

(1−Xi)log(1− P̃ )/(1− P̂ )]

substitute P̃ = 0.5 and P̂ = 1
n

∑n
i=1Xi into LR we can obtain our test statis-

tic. Comparing the test statistic, if it is greater than the critical value χ2(1)
we should reject the null hypothesis, otherwise we can not reject the null
hypothesis

17
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3 Question 3

(16)

The OLSE is now given by β̂ = (X ′X)−1X ′y. Substituting the original
regression equation into y yields

β̂ = β + (X ′X)−1X ′u (18)

Taking expectation on both sides gives

E(β̂) = β + E[(X ′X)−1X ′u] = β + E[(X ′X)−1X ′E(u|X)]. (19)

Note that the second equality comes from the law of iterated expectation.
Since X is correlated with u, E(u|X) 6= 0. Thus, the second term of equation
(??) no longer vanishes. The OLSE is biased estimator.
Let Xt be k × 1 vector such that X = (X ′1, · · · , X ′T ) We reformulate (18) as
follows;

β̂ = β +

(
1

T

∑
t

XtX
′
t

)−1(
1

T

∑
t

Xtut

)
(20)

Assume E(XtX
′
t) = Mxx.

By the weak law of large numbers (WLLN) and Slutzky’s theorem, we have

plim
T→∞

(
1

T

∑
t

XtX
′
t

)−1
= M−1

xx (21)

Since X is correlated with u, E(Xtut) = Mxu 6= 0. By the WLLN, we have

plim
T→∞

(
1

T

∑
t

Xtut

)
= Mxu. (22)

where γ is k× 1 vector. Taking probability limit on both sides of (20) yields
plimT→∞ β̂ = β +MxxMxu. Thus, the OLSE is inconsistent.
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(17)

Let Zt be k × 1 vector such that Z = (Z ′1, · · · , Z ′T ). We assume that:

Assumption 1. Zt is uncorrelated with ut,i.e.Cov(Zt, ut) = E(Ztut) = 0;
Assumption 2. Zt is correlated with Xt,i.e.E(ZtX

′
t) = Mzx.

We reformulate the original regression equation as follows;

Z ′y

T
=
Z ′Xβ

T
+
Z ′u

T
. (23)

Taking probability limit on both sides yields

plim
T→∞

(
1

T

T∑
t=1

Ztyt

)
= plim

T→∞

(
1

T

T∑
t=1

ZtX
′
t

)
β + plim

T→∞

(
1

T

T∑
t=1

Ztut

)
. (24)

By the assumption 1 and 2, and the WLLN, we have

plim
T→∞

(
1

T

T∑
t=1

ZtX
′
t

)−1
plim
T→∞

(
1

T

∑
t

Ztyt

)
= β. (25)

This implies that the consistent estimator of β is

βiv = (Z ′X)−1Z ′y, (26)

which is called instrumental variable estimator.

(18)

Substituting (??) into the regression equation yields

βiv = β +

(∑
t

ZtX
′
T

)−1∑
t

Ztut. (27)

We reformulate this equation as follows;

√
T (βiv − β) =

(
1

T

T∑
t=1

ZtX
′
t

)−1(
1√
T

T∑
t=1

Ztut

)
. (28)
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Using the WLLN and Slutzky’s theorem, we have

plim
T→∞

(
1

T

T∑
t=1

ZtX
′
t

)−1
= M−1

zx . (29)

This comes from the assumption 2. We derive the asymptotic distribution
of T−1/2

∑
t Ztut. Define Z̄t = Ztut. The assumption 1 leads to E(Z̄t) = 0,

and Var(Z̄t) = E(u2tZtZ
′
t) = σ2Mzz. That is, limT→∞((1/T )

∑
t Var(Z̄t)) =

σ2Mzz. Applying the general version of central limit theorem yields

1√
T

T∑
t=1

Z̄t
d→ N(0, σ2Mzz). (30)

Using (??) and (??), we obtain

√
T (βiv − β)

d→ N(0, σ2M−1
zx Mzz(M

′
zx)
−1). (31)
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