Solutions of the homework \#2

LU ANG

April 24th, 2020

Question 1

(1)

According to previous study we know that the $\hat{\beta}_{O L S}$ is derived as:

$$
\hat{\beta}_{O L S}=\frac{\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)\left(y_{t}-\bar{y}\right)}{\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2}}=\frac{\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right) y_{t}}{\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2}}=\sum_{t=1}^{n} \omega_{t} y_{t}=\vec{\omega} \cdot \vec{y}
$$

where $\omega_{t}=\frac{X_{t}-\bar{X}}{\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2}}$
if we view $\hat{\beta}_{O L S}=f(\vec{y})$, we can easily prove that:

$$
f(\alpha \vec{y})=\alpha f(\vec{y}) \text { and } f(\vec{y}+\vec{z})=f(\vec{y})+f(\vec{z})
$$

which means that $\hat{\beta}_{O L S}$ is a linear estimator
(2)
$\hat{\beta}_{O L S}$ is unbiased estimator means $E\left(\hat{\beta}_{O L S}\right)=\beta$, first recall that:

$$
\begin{aligned}
\hat{\beta}_{O L S} & =\sum_{t=1}^{T} \omega_{t} y_{t}=\sum_{t=1}^{T} \omega_{t}\left(\alpha+\beta X_{t}+u_{t}\right) \\
& =\alpha \sum_{t=1}^{T} \omega_{t}+\beta \sum_{t=1}^{n} \omega_{t} X_{t}+\sum_{t=1}^{T} \omega_{t} u_{t} \\
& =\beta+\sum_{t=1}^{T} \omega_{t} u_{t}
\end{aligned}
$$

then we take expectation of $\hat{\beta}_{O L S}$:

$$
E\left(\hat{\beta}_{O L S}\right)=E\left(\beta+\sum_{t=1}^{T} \omega_{t} u_{t}\right)=\beta+\sum_{t=1}^{T} \omega_{t} E\left(u_{t}\right)=\beta \quad \text { q.e.d }
$$

(3)

Suppose that $\tilde{\beta}$ is any unbiased linear estimator, which can be written as:

$$
\begin{aligned}
\tilde{\beta} & =\sum_{t=1}^{T} c_{t} y_{t}=\sum_{t=1}^{T}\left(\omega_{t}+d_{t}\right) y_{t} \\
& =\sum_{t=1}^{T}\left(\omega_{t}+d_{t}\right)\left(\alpha+\beta X_{t}+u_{t}\right) \\
& =\alpha \underbrace{\sum_{t=1}^{T} \omega_{t}}_{=0}+\beta \underbrace{\sum_{t=1}^{T} \omega_{t} X_{t}}_{=1}+\sum_{t=1}^{T} \omega_{t} u_{t}+\alpha \sum_{t=1}^{T} d_{t}+\beta \sum_{t=1}^{T} d_{t} X_{t}+\sum_{t=1}^{T} d_{t} u_{t} \\
& =\beta+\alpha \sum_{t=1}^{T} d_{t}+\beta \sum_{t=1}^{T} d_{t} X_{t}+\sum_{t=1}^{T} \omega_{t} u_{t}+\sum_{t=1}^{T} d_{t} u_{t}
\end{aligned}
$$

Then we take expectation of $\tilde{\beta}$, notice that $E\left(u_{t}\right)=0$

$$
E(\tilde{\beta})=\beta+\alpha \sum_{t=1}^{T} d_{t}+\beta \sum_{t=1}^{T} d_{t} x_{t}+\sum_{t=1}^{T} \omega_{t} \underbrace{E\left(u_{t}\right)}_{=0}+\sum_{t=1}^{T} d_{t} \underbrace{E\left(u_{t}\right)}_{=0}
$$

$$
\begin{gather*}
E(\tilde{\beta})=\beta+\alpha \sum_{t=1}^{T} d_{t}+\beta \sum_{t=1}^{T} d_{t} x_{t}=\beta \\
\text { i.e. } \sum_{t=1}^{T} d_{t}=0 \text { and } \sum_{t=1}^{T} d_{t} x_{t}=0 \tag{1}
\end{gather*}
$$

Next we take the variance of $\tilde{\beta}$, notice that $V\left(u_{t}\right)=\sigma^{2}$.

$$
\begin{aligned}
V(\tilde{\beta}) & =V\left(\beta+\sum_{t=1}^{T}\left(\omega_{t}+d_{t}\right) u_{t}\right)=V\left(\sum_{t=1}^{T}\left(\omega_{t}+d_{t}\right) u_{t}\right)=\sum_{t=1}^{T} V\left(\left(\omega_{t}+d_{t}\right) u_{t}\right) \\
& =\sum_{t=1}^{T}\left(\omega_{t}+d_{t}\right)^{2} V\left(u_{t}\right) \\
& =\sigma^{2}\left(\sum_{t=1}^{T} \omega_{t}^{2}+\sum_{t=1}^{T} \omega_{t} d_{t}+\sum_{t=1}^{T} d_{t}^{2}\right)
\end{aligned}
$$

According to result (1) we know that:

$$
\sum_{t=1}^{T} \omega_{t} d_{t}=\frac{\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right) d_{t}}{\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2}}=\frac{\overbrace{\sum_{t=1}^{T} d_{t} X_{t}}^{=0}-\bar{X} \overbrace{\sum_{t=1}^{T} d_{t}}^{=0}=0}{\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2}}=0
$$

then we can rewrite $V(\tilde{\beta})$ as:

$$
\begin{aligned}
V(\tilde{\beta}) & =\sigma^{2}\left(\sum_{t=1}^{T} \omega_{t}^{2}+\sum_{t=1}^{T} d_{t}^{2}\right) \\
& =\sigma^{2} \sum_{t=1}^{T} \omega_{t}^{2}+\sigma^{2} \sum_{t=1}^{T} d_{t}^{2} \\
& =V\left(\hat{\beta}_{O L S}\right)+\sigma^{2} \sum_{t=1}^{T} d_{t}^{2} \geq V\left(\hat{\beta}_{O L S}\right)
\end{aligned}
$$

Thus we have proved the efficiency of OLS estimator
(4)
according to weak law of large number(WLLN):

$$
\frac{1}{T} \sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)\left(u_{t}-\bar{u}\right) \xrightarrow{p} \operatorname{Cov}\left(X_{t}, u_{t}\right)=0
$$

P.S :
$\operatorname{Cov}\left(X_{t}, u_{t}\right)=E\left(X_{t} u_{t}\right)-E\left(X_{t}\right) \underbrace{E\left(u_{t}\right)}_{=0}=E\left(E\left(X_{t} u_{t} \mid X_{t}\right)\right)=E(X_{t} \underbrace{E\left(u_{t} \mid X_{t}\right)}_{=0})=0$
we also assume that:

$$
\frac{1}{T} \sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2} \xrightarrow{p} m<\infty
$$

Then we look at $\hat{\beta}_{O L S}$:

$$
\begin{gathered}
\hat{\beta}_{O L S}=\beta+\sum_{t=1}^{T} \omega_{t} u_{t}=\beta+\frac{\frac{1}{T} \sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)\left(u_{t}-\bar{u}\right)}{\frac{1}{T} \sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2}} \\
\text { as } T \longrightarrow \infty, \frac{\frac{1}{T} \sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)\left(u_{t}-\bar{u}\right)}{\frac{1}{T} \sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2}} \longrightarrow \frac{0}{m}
\end{gathered}
$$

thus we have:

$$
\hat{\beta}_{O L S} \longrightarrow \beta \quad \text { as } \quad n \longrightarrow \infty \quad \text { q.e.d }
$$

(5)

Following the Center Limit theorem(CLT):

$$
\begin{aligned}
\frac{\sum_{t=1}^{T} \omega_{t} u_{t}-E\left(\sum_{t=1}^{T} \omega_{t} u_{t}\right)}{\sqrt{V\left(\sum_{t=1}^{T} \omega_{t} u_{t}\right)}} & =\frac{\sum_{t=1}^{T} \omega_{t} u_{t}-\sum_{t=1}^{T} \omega_{t} \overbrace{E\left(u_{t}\right)}^{=0}}{\sqrt{V\left(\sum_{t=1}^{T} \omega_{t} u_{t}\right)}} \\
& =\frac{\sum_{t=1}^{T} \omega_{t} u_{t}}{\sigma \sqrt{\sum_{t=1}^{T} \omega_{t}^{2}}} \\
& =\frac{\hat{\beta}-\beta}{\sigma / \sqrt{\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2}}} \\
& =\frac{\sqrt{T} \hat{\beta}-\beta}{\sigma / \sqrt{\frac{1}{T} \sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2}}} \longrightarrow N(0,1)
\end{aligned}
$$

where $\sum_{t=1}^{T} \omega_{t} u_{t}=\hat{\beta}-\beta$ and $\sum_{t=1}^{T} \omega_{t}^{2}=\frac{1}{\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2}}$
as $T \longrightarrow \infty$ we substitute $\frac{1}{T} \sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)$ with its convergence value m:

$$
\begin{aligned}
& \frac{\sqrt{T}(\hat{\beta}-\beta)}{\sigma / \sqrt{m}} \longrightarrow N(0,1) \\
& \sqrt{T}(\hat{\beta}-\beta) \longrightarrow N\left(0, \frac{\sigma^{2}}{m}\right)
\end{aligned}
$$

