Econometrics I: Solutions of Homework 3

Hiroki Kato *

April 27, 2020

Contents

1 Solutions 1
1.1 Question 1 (1) 1
1.2 Question 1 (2) 3
2 Review: Distributions 4
2.1 Normal Distribution 4
2.2 Chi-squared Distribution 5
2.3 t Distribution 5

1 Solutions

1.1 Question 1 (1)

The OLS estimator of β is

$$
\begin{equation*}
\hat{\beta}=\frac{\sum_{t}\left(y_{t}-\bar{y}\right)\left(X_{t}-\bar{X}\right)}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \tag{1}
\end{equation*}
$$

[^0]Then, substituting $y_{t}=\alpha+\beta X_{t}+u_{t}$ into this equation yields

$$
\begin{aligned}
\hat{\beta} & =\frac{\sum_{t}\left(\alpha+\beta X_{t}+u_{t}-\bar{y}\right)\left(X_{t}-\bar{X}\right)}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \\
& =\frac{\beta \sum_{t}\left(X_{t}-\bar{X}\right) X_{t}+\sum_{t}\left(X_{t}-\bar{X}\right) u_{t}}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \\
& =\beta+\frac{\sum_{t}\left(X_{t}-\bar{X}\right) u_{t}}{\sum_{t}\left(X_{t}-\bar{X}\right)^{2}} \\
& =\beta+\sum_{t} \omega_{t} u_{t}
\end{aligned}
$$

The moment-generating function of $\hat{\beta}$ is defined by

$$
\begin{equation*}
M(\theta) \equiv E\left[\exp \left(\theta\left(\beta+\sum_{t} \omega_{t} u_{t}\right)\right)\right] \tag{2}
\end{equation*}
$$

Then, we have

$$
\begin{align*}
M(\theta) & =E\left[\exp \left(\theta \beta+\theta \sum_{t} \omega_{t} u_{t}\right)\right] \\
& \left.=E\left[\exp (\theta \beta) \exp \left(\theta \sum_{t} \omega_{t} u_{t}\right)\right)\right] \\
& \left.=\exp (\theta \beta) E\left[\exp \left(\theta \sum_{t} \omega_{t} u_{t}\right)\right)\right] \\
& =\exp (\theta \beta) \prod_{t=1}^{T} E\left[\exp \left(\theta \omega_{t} u_{t}\right)\right] \tag{3}
\end{align*}
$$

Since $u_{t} \sim N\left(0, \sigma^{2}\right)$,

$$
E\left[\exp \left(\theta \omega_{t} u_{t}\right)\right]=M\left(\theta \omega_{t}\right)=\exp \left(\sigma^{2}\left(\theta \omega_{t}\right)^{2} / 2\right)
$$

Substituting this into (3) yields

$$
\begin{aligned}
M(\theta) & =\exp (\theta \beta) \prod_{t} \exp \left(\sigma^{2}\left(\theta \omega_{t}\right)^{2} / 2\right) \\
& =\exp \left(\theta \beta+\frac{1}{2} \sigma^{2} \theta^{2} \sum_{t} \omega_{t}^{2}\right)
\end{aligned}
$$

This implies that the exact distribution of $\hat{\beta}$ is

$$
\begin{equation*}
\hat{\beta} \sim N\left(\beta, \sigma^{2} \sum_{t} \omega^{2}\right) \tag{4}
\end{equation*}
$$

We will derive the exact distribution more formally, using the following properties:

$$
\begin{equation*}
M^{(k)}(0)=E\left(X^{k}\right) \tag{5}
\end{equation*}
$$

where $M^{(k)}(\theta)=\partial^{k} M(\theta) / \partial \theta^{k} . E\left(X^{k}\right)$ is called k-th moment of random variable X. First, we will calculate first and second-order derivative of MGF as follows:

$$
\begin{aligned}
M^{(1)}(\theta) & =\left(\beta+\sigma^{2} \theta \sum_{t} \omega_{t}^{2}\right) \exp (\cdot) \\
M^{(2)}(\theta) & =\left(\sigma^{2} \sum_{t} \omega_{t}^{2}\right) \exp (\cdot)+\left(\beta+\sigma^{2} \theta \sum_{t} \omega_{t}^{2}\right)^{2} \exp (\cdot)
\end{aligned}
$$

By evaluating two equations at $\theta=0$, we obtain first and second moment:

$$
\begin{aligned}
& E(\hat{\beta})=\beta \\
& E\left(\hat{\beta}^{2}\right)=\sigma^{2} \sum_{t} \omega_{t}^{2}+\beta^{2}
\end{aligned}
$$

Finally, variance of $\hat{\beta}$ is

$$
V(\hat{\beta})=E\left[(\hat{\beta}-E(\hat{\beta}))^{2}\right]=E\left(\hat{\beta}^{2}\right)-E(\hat{\beta})^{2}=\sigma^{2} \sum_{t} \omega_{t}^{2} .
$$

1.2 Question 1 (2)

Let $Z \equiv(\hat{\beta}-\beta) / \sigma \sqrt{\sum_{t} \omega_{t}^{2}}$. Then, $Z \sim N(0,1)$ since $\hat{\beta}$ is normally distributed, and

$$
\begin{aligned}
& E(Z)=\frac{E(\hat{\beta})-\beta}{\sigma \sqrt{\sum_{t} \omega_{t}^{2}}}=0 \\
& V(Z)=\frac{E\left(\hat{\beta}^{2}\right)-\beta^{2}}{\sigma^{2} \sum_{t} \omega_{t}^{2}}=1
\end{aligned}
$$

Using a property that $k s^{2} / \sigma^{2} \sim \chi^{2}(k)$ where k is a degree of freedom and s^{2} is unbiased and consistent estimator of σ^{2}, we obtain

$$
(T-2) \frac{s^{2}}{\sigma^{2}}=(T-2) \frac{s^{2} \sum_{t} \omega_{t}^{2}}{\sigma^{2} \sum_{t} \omega_{t}^{2}} \sim \chi^{2}(T-2)
$$

Let $V \equiv(T-2) s^{2} \sum_{t} \omega_{t}^{2} / \sigma^{2} \sum_{t} \omega_{t}^{2}$. Then,

$$
\frac{Z}{\sqrt{V /(T-2)}}=\frac{\hat{\beta}-\beta}{\sigma \sqrt{\sum_{t} \omega_{t}^{2}}} / \sqrt{\frac{s^{2} \sum_{t} \omega_{t}^{2}}{\sigma^{2} \sum_{t} \omega_{t}^{2}}}=\frac{\hat{\beta}-\beta}{s \sqrt{\sum_{t} \omega_{t}^{2}}} \sim t(T-2) .
$$

Thus, $(\hat{\beta}-\beta) / s \sqrt{\sum_{t} \omega_{t}^{2}}$ is a t-distribution with $T-2$ degrees of freedom.

2 Review: Distributions

2.1 Normal Distribution

Let $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.

- Property 1. $a X+b \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$
- Property 2 (standarization). $Z=(X-\mu) / \sigma \sim N(0,1)$
- Property 3 (Reproduction). Suppose that X and Y are mutually independent. Then, $X+Y \sim$ $N\left(\mu+\mu_{Y}, \sigma^{2}+\sigma_{Y}^{2}\right)$.

Proof. First, prove Property 1.

$$
\begin{aligned}
E[\exp (\theta(a X+b))] & =E[\exp (\theta a X)] \exp (\theta b) \\
& =\exp \left(\mu \theta a+\sigma^{2}(\theta a)^{2} / 2\right) \exp (\theta b) \\
& =\exp \left(\theta(a \mu+b)+\theta^{2}(\sigma a)^{2} / 2\right)
\end{aligned}
$$

Note that second equality comes from $X \sim N\left(\mu, \sigma^{2}\right)$ and its MGF $M(\theta)=\exp \left(\mu \theta+\sigma^{2} \theta^{2} / 2\right)$. This implies that $a X+b \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$.
Second, prove Property 2.

$$
\begin{aligned}
E[\exp (\theta(X-\mu) / \sigma)] & =E[\exp ((\theta / \sigma) X)] / \exp (\mu(\theta / \sigma)) \\
& =\exp \left(\mu(\theta / \sigma)+\sigma^{2}(\theta / \sigma)^{2} / 2\right) / \exp (\mu(\theta / \sigma)) \\
& =\exp \left(\theta^{2} / 2\right)
\end{aligned}
$$

This is equivalent the moment-generating function whose random variable is a standard normal distribution.

Third, prove Property 3. To prove it, we first show that the moment-generating function of $X+Y$ is $M_{X}(t) M_{Y}(t)$.
$M_{X+Y}(t)=E[\exp (t(X+Y))]=E[\exp (t X) \exp (t Y)]=E[\exp (t X)] E[\exp (t Y)]=M_{X}(t) M_{Y}(t)$.

Third equality holds since $E(X Y)=E(X) E(Y)$ only if X and Y are independent. Finally, we
obtain

$$
\begin{aligned}
M_{X+Y}(\theta) & =\exp \left(\mu \theta+\theta^{2} \sigma^{2} / 2\right) \exp \left(\mu_{Y} \theta+\theta^{2} \sigma_{Y}^{2} / 2\right) \\
& =\exp \left(\theta\left(\mu+\mu_{Y}\right)+\theta^{2}\left(\sigma^{2}+\sigma_{Y}^{2}\right) / 2\right)
\end{aligned}
$$

This implies that $X+Y \sim N\left(\mu+\mu_{Y}, \sigma^{2}+\sigma_{Y}^{2}\right)$.

2.2 Chi-squared Distribution

Let $X \sim N\left(\mu, \sigma^{2}\right)$. Consider $Z=(X-\mu) / \sigma \sim N(0,1)$. Then,

$$
V=\sum_{i}^{n} z_{i}^{2} \sim \chi^{2}(n)
$$

If μ are unknown parameter, and we use sample mean $\bar{x}=\sum_{i} x_{i} / n$ instead of μ, then

$$
V=\sum_{i}^{n} \hat{z}_{i}^{2} \sim \chi^{2}(n-1)
$$

where $\hat{z}_{i} \equiv\left(x_{i}-\bar{x}\right) / \sigma$.
Recall that unbiased estimator of σ^{2} is $s^{2}=\sum_{i}\left(x_{i}-\bar{x}\right)^{2} /(n-1)$. Then, we obtain

$$
\begin{aligned}
\sigma^{2} V & =(n-1) s^{2} \\
V & =(n-1) \frac{s^{2}}{\sigma^{2}}
\end{aligned}
$$

2.3 t Distribution

Let $X \sim N\left(\mu, \sigma^{2}\right)$. The sample means is $\bar{x}=\sum_{i} x_{i} / n$, and the unbiased sample variance is $s^{2}=$ $\sum_{i}\left(x_{i}-\bar{x}\right)^{2} /(n-1)$. Then,

$$
T=\frac{\bar{x}-\mu}{s / \sqrt{n}} \sim t(n-1)
$$

Moreover,

$$
T=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} / \frac{s / \sqrt{n}}{\sigma / \sqrt{n}}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} / \frac{s}{\sigma}=\frac{Z_{\bar{x}}}{\sqrt{V /(n-1)}} \sim t(n-1),
$$

where $Z_{\bar{x}} \sim N(0,1)$ by CLT.
Generally, $Z \sim N(0,1), V \sim \chi^{2}(k)$, and Z is independent of V. Then, $Z / \sqrt{V / k} \sim \chi^{2}(k)$.

[^0]: *e-mail: vge008kh@student.econ.osaka-u.ac.jp. Room 503. All materials I made are published in github: https://github.com/KatoPachi/2020EconometricsTA.git. If you have any errors in handouts and materials, please contact me via e-mail or make an issue in github.

