Econometrics I: Solutions of the homework #4

LU ANG*

May 11, 2020

Contents

1	Question solution	1
	(1)	1
	(2)	3
	(3)	4
2	Extension	4

1 Question solution

(1)

In multiple regression case, the regression function can be written as:

$$\underbrace{\begin{pmatrix} y_1 \\ \vdots \\ y_T n n \end{pmatrix}}_{\in \mathbb{R}^T} = \underbrace{\begin{pmatrix} x_{1,1} & \cdots & x_{1,k} \\ \vdots & \ddots & \vdots \\ x_{1,T} & \cdots & x_{T,k} \end{pmatrix}}_{\in \mathbb{M}/T \times k)(\mathbb{R})} \underbrace{\begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}}_{\in \mathbb{R}^k} + \underbrace{\begin{pmatrix} u_1 \\ \vdots \\ u_T \end{pmatrix}}_{\in \mathbb{R}^T} \iff y = X\beta + u$$

 $^{^{*}\}mbox{If}$ you have any errors in handouts and materials, please contact me via lvang12@hotmail.com

Then we replace β by $\hat{\beta}$ and we can have the following expression:

$$y = X\hat{\beta} + e$$

where $\hat{\beta}$ is the OLS estimator and e is $n \times 1$ vector of residual

Next we can write the sum of squared residuals as follows:

$$S(\hat{\beta}) = \sum_{t=1}^{n} e_i^2 = e'e = (y - X\hat{\beta})'(y - X\hat{\beta}) = (y - \hat{\beta}'y')(y - X\hat{\beta})$$
$$= y'y - y'X'\hat{\beta} - \hat{\beta}'X'y + \hat{\beta}'X'X\hat{\beta} = y'y - 2y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}$$

To minimize $S(\hat{\beta})$ with respect to $\hat{\beta}$, we set the first derivative of $S(\hat{\beta})$ equal to zero:

$$\frac{\partial S(\hat{\beta})}{\partial \hat{\beta}} = -2X'y + 2X'X\hat{\beta} = 0$$

Notice here we applied the matrix calculus rules:

$$\frac{\partial a'x}{\partial x} = a \qquad \frac{\partial x'Ax}{\partial x} = 2Ax$$

Solve the equation we can obtain the OLS estimator as:

$$\hat{\beta} = (X'X)^{-1}X'y$$

Noticing that in order to satisfy the multivariate minimum condition, the second order derivative:

$$\frac{\partial^2 S(\hat{\beta})}{\partial \hat{\beta} \partial \hat{\beta}'} = 2X'X$$

has to be a positive define matrix

(2)

In order to calculate the mean and variance of $\hat{\beta}$ we first need to rewrite the $\hat{\beta}$ as:

$$\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'y = (X'X)^{-1}X'(X\beta + u) = (X'X)^{-1}X'X\beta + (X'X)^{-1}X'u$$
$$= \beta + (X'X)^{-1}X'u$$

Then we take the conditional expectation for both sides:

$$E(\hat{\beta}|X) = E(\beta + (X'X)^{-1}X'u|X) = \beta + (X'X)^{-1}X'E(u|X) = \beta$$

where E(u|X) = 0 by the Gauss-Markov theorem

$$V(\hat{\beta}|X) = E((\hat{\beta} - \beta)(\hat{\beta} - \beta)'|X) = E((X'X)^{-1}X'u((X'X)^{-1}X'u)')$$

$$= E((X'X)^{-1}X'uu'X(X'X)^{-1}|X)$$

$$= (X'X)^{-1}X'E(uu'|X)X(X'X)^{-1}$$

$$= (X'X)^{-1}X'\sigma^{2}I_{T}X(X'X)^{-1}$$

$$= \sigma^{2}(X'X)^{-1}X'X(X'X)^{-1}$$

$$= \sigma^{2}(X'X)^{-1}$$

(3)

Notice the moment-generating function of $X \sim N(u, \Sigma)$ is given by:

$$\phi(\theta) \equiv E(exp(\theta'X)) = E(exp(\theta u + \frac{1}{2}\theta'\Sigma\theta)$$

In our case we know that the standard error $u \sim N(0, \sigma^2 I_T)$. i.e.

$$\phi(\theta_u) \equiv E(exp(\theta'_u X)) = E(exp(\frac{1}{2}\theta'_u \theta_u))$$

Next in order to derive a distribution of $\hat{\beta}$, we write the moment-generating function of $\hat{\beta}$ as follows:

$$\phi(\theta) \equiv E(\exp(\theta'_{\beta}\hat{\beta})) = E(\exp(\theta'_{\beta}\beta + \theta'_{\beta}(X'X)^{-1}X'u))$$

$$= \exp(\theta'_{\beta}\beta)E(\exp(\theta'_{\beta}(X'X)^{-1}X'u)) = \exp(\theta'_{\beta}\beta)\phi_{u}(\theta'_{\beta}(X'X)^{-1}X')$$

$$= \exp(\theta'_{\beta}\beta)\exp(\frac{\sigma^{2}}{2}\theta'_{\beta}(X'X)^{-1}\theta_{\beta}) = \exp(\theta'_{\beta}\beta + \frac{\sigma^{2}}{2}\theta'_{\beta}(X'X)^{-1}\theta_{\beta})$$

where $\theta_u = X(X'X)^{-1}\theta_{\beta}$

This indicate that:

$$\hat{\beta} \sim N(\beta, \sigma^2(X'X)^{-1})$$

2 Extension

moment-generating function

MGF is a useful tool in terms of calculating the moment of a random variable, first we know that:

$$E(X)$$
 is the 1th moment
 $E(X^2)$ is the 2th moment
 \vdots
 $E(X^k)$ is the k^{th} moment

In order to calculate the moment in a simple way, we define the Moment Generating Function as:

$$\phi_x(\theta) = E(e^{\theta X}) = \begin{cases} \sum_{all \ x} e^{\theta x} p(x) & discrete \\ \int_{-\infty}^{+\infty} e^{\theta x} f(x) dx & continuous \end{cases}$$

then we can obtain the nth moment by calculating the nth order derivative and evaluate by $\theta = 0$:

$$E(X^n) = \frac{d^n}{d\theta^n} \phi_x(\theta) \bigg|_{\theta=0}$$

proof

the exponential function e^x can be expanded as:

$$e^X = 1 + X + \frac{X^2}{2!} + \frac{X^3}{3!} \cdots$$

therefore:

$$e^{\theta X} = 1 + \theta X + \frac{\theta^2}{2!} X^2 + \frac{\theta^3}{3!} X^3 \cdots$$

then we take the expectation for both sides:

$$E(e^{\theta X}) = 1 + \theta E(X) + \frac{\theta^2}{2!} E(X^2) + \frac{\theta^3}{3!} E(X^3) \cdots$$

Next take the derivative with respect to θ and take the value at $\theta = 0$

$$\left. \frac{d}{d\theta} E(e^{\theta X}) \right|_{\theta=0} = 0 + E(X) + \theta E(X^2) \cdots \right|_{\theta=0} = E(X)$$

Likewise, if we were to calculate the nth moment, we can simply find it by taking the nth order derivative and evaluate by $\theta = 0$

$$\left. \frac{d^n}{d\theta^n} E(e^{\theta X}) \right|_{\theta=0} = 0 + \dots + 0 + E(X^n) + \theta E(X^{n+1}) \cdots \right|_{\theta=0} = E(X^n)$$