Econometrics I: Solutions of the homework \#4

LU ANG*

May 11, 2020

Contents

1 Question solution 1
(1) 1
(2)
(3)

2 Extension 4

1 Question solution

(1)

In multiple regression case, the regression function can be written as:

$$
\underbrace{\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{T} n n
\end{array}\right)}_{\in \mathbb{R}^{T}}=\underbrace{\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, k} \\
\vdots & \ddots & \vdots \\
x_{1, T} & \cdots & x_{T, k}
\end{array}\right)}_{\left.\in \mathbb{M}_{(} T \times k\right)(\mathbb{R})} \underbrace{\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right)}_{\in \mathbb{R}^{k}}+\underbrace{\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{T}
\end{array}\right)}_{\in \mathbb{R}^{T}} \Longleftrightarrow y=X \beta+u
$$

[^0]Then we replace β by $\hat{\beta}$ and we can have the following expression:

$$
y=X \hat{\beta}+e
$$

where $\hat{\beta}$ is the OLS estimator and e is $n \times 1$ vector of residual
Next we can write the sum of squared residuals as follows:

$$
\begin{aligned}
S(\hat{\beta}) & =\sum_{t=1}^{n} e_{i}^{2}=e^{\prime} e=(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})=\left(y-\hat{\beta}^{\prime} y^{\prime}\right)(y-X \hat{\beta}) \\
& =y^{\prime} y-y^{\prime} X^{\prime} \hat{\beta}-\hat{\beta}^{\prime} X^{\prime} y+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta}=y^{\prime} y-2 y^{\prime} X \hat{\beta}+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta}
\end{aligned}
$$

To minimize $S(\hat{\beta})$ with respect to $\hat{\beta}$, we set the first derivative of $S(\hat{\beta})$ equal to zero:

$$
\frac{\partial S(\hat{\beta})}{\partial \hat{\beta}}=-2 X^{\prime} y+2 X^{\prime} X \hat{\beta}=0
$$

Notice here we applied the matrix calculus rules:

$$
\frac{\partial a^{\prime} x}{\partial x}=a \quad \frac{\partial x^{\prime} A x}{\partial x}=2 A x
$$

Solve the equation we can obtain the OLS estimator as:

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

Noticing that in order to satisfy the multivariate minimum condition, the second order derivative:

$$
\frac{\partial^{2} S(\hat{\beta})}{\partial \hat{\beta} \partial \hat{\beta}^{\prime}}=2 X^{\prime} X
$$

has to be a positive define matrix
(2)

In order to calculate the mean and variance of $\hat{\beta}$ we first need to rewrite the $\hat{\beta}$ as:

$$
\begin{aligned}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u)=\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u
\end{aligned}
$$

Then we take the conditional expectation for both sides:

$$
E(\hat{\beta} \mid X)=E\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \mid X\right)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} E(u \mid X)=\beta
$$

where $E(u \mid X)=0$ by the Gauss-Markov theorem

$$
\begin{aligned}
V(\hat{\beta} \mid X) & =E\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime} \mid X\right)=E\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime}\right) \\
& =E\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1} \mid X\right) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} E\left(u u^{\prime} \mid X\right) X\left(X^{\prime} X\right)^{-1} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} \sigma^{2} I_{T} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

(3)

Notice the moment-generating function of $X \sim N(u, \Sigma)$ is given by:

$$
\phi(\theta) \equiv E\left(\exp \left(\theta^{\prime} X\right)\right)=E\left(\exp \left(\theta u+\frac{1}{2} \theta^{\prime} \Sigma \theta\right)\right.
$$

In our case we know that the standard error $u \sim N\left(0, \sigma^{2} I_{T}\right)$. i.e.

$$
\phi\left(\theta_{u}\right) \equiv E\left(\exp \left(\theta_{u}^{\prime} X\right)\right)=E\left(\exp \left(\frac{1}{2} \theta_{u}^{\prime} \theta_{u}\right)\right.
$$

Next in order to derive a distribution of $\hat{\beta}$, we write the moment-generating function of $\hat{\beta}$ as follows:

$$
\begin{aligned}
\phi(\theta) & \equiv E\left(\exp \left(\theta_{\beta}^{\prime} \hat{\beta}\right)\right)=E\left(\exp \left(\theta_{\beta}^{\prime} \beta+\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right. \\
& =\exp \left(\theta_{\beta}^{\prime} \beta\right) E\left(\exp \left(\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right)=\exp \left(\theta_{\beta}^{\prime} \beta\right) \phi_{u}\left(\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =\exp \left(\theta_{\beta}^{\prime} \beta\right) \exp \left(\frac{\sigma^{2}}{2} \theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} \theta_{\beta}\right)=\exp \left(\theta_{\beta}^{\prime} \beta+\frac{\sigma^{2}}{2} \theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} \theta_{\beta}\right)
\end{aligned}
$$

where $\theta_{u}=X\left(X^{\prime} X\right)^{-1} \theta_{\beta}$
This indicate that:

$$
\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)
$$

2 Extension

moment-generating function

MGF is a useful tool in terms of calculating the moment of a random variable, first we know that:

$$
\begin{gathered}
E(X) \text { is the } 1^{\text {th }} \text { moment } \\
E\left(X^{2}\right) \text { is the } 2^{\text {th }} \text { moment } \\
\vdots \\
E\left(X^{k}\right) \text { is the } k^{\text {th }} \text { moment }
\end{gathered}
$$

In order to calculate the moment in a simple way, we define the Moment Generating Function as:

$$
\phi_{x}(\theta)=E\left(e^{\theta X}\right)= \begin{cases}\sum_{\text {all } x} e^{\theta x} p(x) & \text { discrete } \\ \int_{-\infty}^{+\infty} e^{\theta x} f(x) d x & \text { continuous }\end{cases}
$$

then we can obtain the nth moment by calculating the nth order derivative and evaluate by $\theta=0$:

$$
E\left(X^{n}\right)=\left.\frac{d^{n}}{d \theta^{n}} \phi_{x}(\theta)\right|_{\theta=0}
$$

proof

the exponential function e^{x} can be expanded as:

$$
e^{X}=1+X+\frac{X^{2}}{2!}+\frac{X^{3}}{3!} \cdots
$$

therefore:

$$
e^{\theta X}=1+\theta X+\frac{\theta^{2}}{2!} X^{2}+\frac{\theta^{3}}{3!} X^{3} \cdots
$$

then we take the expectation for both sides :

$$
E\left(e^{\theta X}\right)=1+\theta E(X)+\frac{\theta^{2}}{2!} E\left(X^{2}\right)+\frac{\theta^{3}}{3!} E\left(X^{3}\right) \cdots
$$

Next take the derivative with respect to θ and take the value at $\theta=0$

$$
\left.\frac{d}{d \theta} E\left(e^{\theta X}\right)\right|_{\theta=0}=0+E(X)+\left.\theta E\left(X^{2}\right) \cdots\right|_{\theta=0}=E(X)
$$

Likewise, if we were to calculate the nth moment, we can simply find it by taking the nth order derivative and evaluate by $\theta=0$

$$
\left.\frac{d^{n}}{d \theta^{n}} E\left(e^{\theta X}\right)\right|_{\theta=0}=0+\cdots+0+E\left(X^{n}\right)+\left.\theta E\left(X^{n+1}\right) \cdots\right|_{\theta=0}=E\left(X^{n}\right)
$$

[^0]: *If you have any errors in handouts and materials, please contact me via lvang12@hotmail.com

