Econometrics I: Solutions of Homework 5

Hiroki Kato *

May 20, 2020

Contents

1 Solutions 1
1.1 Question 1 1
1.2 Question 2 3
1.3 Question 3 3
2 Review 5
2.1 Projection Matrix 5
2.2 Property of Idempotent Matrix 6

1 Solutions

1.1 Question 1

We will show that $E\left(s^{2}\right)=\sigma^{2}$. The OLS estimator of β is $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$. Substituting $y=X \beta+u$ into $\hat{\beta}$ yields

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u .
$$

Then, we will obtain

[^0]\[

$$
\begin{align*}
y-X \hat{\beta} & =y-X\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right) \\
& =(y-X \beta)+X\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\left(I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u . \tag{1}
\end{align*}
$$
\]

Let $P \equiv X\left(X^{\prime} X\right)^{-1} X^{\prime}$. The matrix P is called the projection matrix, which maps the vectors of response values (dependent variable) to the vector of fitted values. On the other hand, Define $M \equiv I_{T}-P$, which maps to vectors of response values to the vector of residual values. The matrix P and M are idempotent and symmetric, that is, $P^{2}=P, P^{\prime}=P, M^{2}=M$ and $M^{\prime}=M$ (we will review later).

Using equation (1), the estimator of σ^{2} is

$$
\begin{align*}
s^{2} & =\frac{1}{T-k}(M u)^{\prime} M u \\
& =\frac{1}{T-k} u^{\prime} M M u \\
& =\frac{1}{T-k} u^{\prime} M u . \tag{2}
\end{align*}
$$

$u^{\prime} M u$ is scalar because u and M are $T \times 1$ and $T \times T$ matrices. Using properties of trace (see the lecture note), we obtain

$$
\begin{align*}
u^{\prime} M u & =\operatorname{tr}\left(u^{\prime} M u\right) \\
& =\operatorname{tr}\left(M u u^{\prime}\right) \\
& =\operatorname{tr}\left(\left(I_{T}-\left(X^{\prime} X\right)^{-1} X^{\prime} X\right) u u^{\prime}\right) \\
& =\operatorname{tr}\left(\left(I_{T}-I_{k}\right) u u^{\prime}\right) . \tag{3}
\end{align*}
$$

Finally, the expectation of s^{2} is

$$
\begin{aligned}
E\left(s^{2}\right) & =\frac{1}{T-k} E\left[\operatorname{tr}\left(\left(I_{T}-I_{k}\right) u u^{\prime}\right)\right] \\
& =\frac{1}{T-k} \operatorname{tr}\left(\left(I_{T}-I_{k}\right) E\left(u u^{\prime}\right)\right) \\
& =\frac{1}{T-k} \sigma^{2}\left(\operatorname{tr}\left(I_{T}\right)-\operatorname{tr}\left(I_{k}\right)\right) \\
& =\frac{1}{T-k} \sigma^{2}(T-k) \\
& =\sigma^{2} .
\end{aligned}
$$

1.2 Question 2

From the previous question, $(T-k) s^{2}$ yields

$$
(T-k) s^{2}=(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})=u^{\prime} M u,
$$

Since M is symmetric and idempotent, $\operatorname{rank}(M)$ is equivalent to the value of trace, which leads to $\operatorname{tr}(M)=T-k$. By the assumption that u is normally distributed,

$$
\begin{equation*}
\frac{(T-k) s^{2}}{\sigma^{2}}=\frac{u^{\prime} M u}{\sigma^{2}} \sim \chi^{2}(T-k) \tag{4}
\end{equation*}
$$

1.3 Question 3

To show that OLS estimator is BLUE (i.e. best linear unbiased estimator), we need to prove that other linear unbiased estimators have larger variances than the OLS estimator, that is, $V(\tilde{\beta})-V(\hat{\beta}) \geq$ 0 where $\tilde{\beta}$ is other linear unbiased estimator.

The first step is to construct a linear unbiased estimator, $\tilde{\beta}$. Since a linear estimator is a function of dependent variable, y, define $\tilde{\beta}=C y$ where C is a $k \times T$ matrix. Then, the expectation of $\tilde{\beta}$ is

$$
E(\tilde{\beta})=E(C(X \beta+u))=C X \beta
$$

If $\tilde{\beta}$ is an unbiased estimator, it must hold that

$$
\begin{equation*}
C X=I_{k}, \tag{5}
\end{equation*}
$$

where I_{k} is $k \times k$ identity matrix.
The second step is to derive the variance-covariance matrix of $\tilde{\beta}, V(\tilde{\beta})$. As in the lecture note, you can assume $C=D+\left(X^{\prime} X\right)^{-1} X^{\prime}$ without loss of generality, and calculate its variance-covariance matrix. In this material, we derive the variance-covariance matrix without assuming the matrix form of C. Assuming $C X=I_{k}$, we derive the variance-covariance matrix of $\tilde{\beta}$ as follows:

$$
E\left[(\tilde{\beta}-\beta)(\tilde{\beta}-\beta)^{\prime}\right]=E\left[C u(C u)^{\prime}\right]=E\left[C u u^{\prime} C^{\prime}\right]=C E\left(u u^{\prime}\right) C^{\prime}=\sigma^{2} C C^{\prime} .
$$

The projection matrix P under OLS estimator is $P=X\left(X^{\prime} X\right)^{-1} X^{\prime}$, which is a $T \times T$ matrix. Moreover, the matrix M that makes the vector of residuals is $M=I-P$. Thus, $P+M=I_{T}$. Inserting $P+M$ into the variance-covariance matrix of $\tilde{\beta}$ yields

$$
\begin{aligned}
V(\tilde{\beta}) & =\sigma^{2} C I_{T} C^{\prime} \\
& =\sigma^{2} C(P+M) C^{\prime} \\
& =\sigma^{2}\left[C P C^{\prime}+C M C^{\prime}\right] \\
& =\sigma^{2}\left[C X\left(X^{\prime} X\right)^{-1} X^{\prime} C+C M C^{\prime}\right] \\
& =\sigma^{2}\left[I_{k}\left(X^{\prime} X\right)^{-1} I_{k}+C M C^{\prime}\right] \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}+\sigma^{2} C M C^{\prime} .
\end{aligned}
$$

Since the variance-covariance matrix of $\hat{\beta}$, OLS estimator, is $\hat{\beta}=\sigma^{2}\left(X^{\prime} X\right)^{-1}$, we obtain

$$
V(\tilde{\beta})-V(\hat{\beta})=\sigma^{2} C M C^{\prime}
$$

Because M is idempotent, M is positive-semidefinite. Since M is symmetric and positive-semidefinite, $C M C^{\prime}$ is also symmetric and positive-semidefinite ${ }^{1}$. Thus, $V(\tilde{\beta}) \geq V(\hat{\beta})$ holds.

[^1]
2 Review

2.1 Projection Matrix

Using the same notations as above, consider the regression model, $y=X \beta+u$. The OLS estimator of β is given by $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$. Then, the fitted value of y is

$$
\hat{y}=X \hat{\beta}=X\left(X^{\prime} X\right)^{-1} X^{\prime} y=P_{X} y
$$

where $P_{X} \equiv X\left(X^{\prime} X\right)^{-1} X^{\prime}$. The matrix P is called the projection matrix. This matrix maps a vector of response values to a vector of its fitted values. Using the projection matrix, we can express residuals as follows:

$$
y-\hat{y}=\left(I_{T}-P_{X}\right) y=M_{X} y
$$

where $M_{X}=I_{T}-P_{X}=I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$, and I_{T} is a $T \times T$ identity matrix. The matrix M maps a vector of response values to a vector of residual values. These two operators have the following properties:

1. P_{X} and M_{X} are idempotent and symmetric;
2. $P_{X} X=X$ and $M_{X} X=0$;
3. $P_{X} M_{X}=M_{X} P_{X}=0$

Proof of Statement 1: First, we will prove the statement that P_{X} and M_{X} are symmetric. About the projection matrix, P_{X},

$$
\begin{aligned}
P_{X}^{\prime}=\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} & =\left(\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} X^{\prime} \\
& =X\left(\left(X^{\prime} X\right)^{-1}\right)^{\prime} X^{\prime} \\
& =X\left(\left(X^{\prime} X\right)^{\prime}\right)^{-1} X^{\prime} \\
& =X\left(X^{\prime} X\right)^{-1} X^{\prime}=P_{X} .
\end{aligned}
$$

Thus, we prove that $P_{X}^{\prime}=P_{X}$. Using this, we derive $M_{X}^{\prime}=M_{X}$ because

$$
M_{X}^{\prime}=\left(I_{T}-P_{X}\right)^{\prime}=I_{T}-P_{X}^{\prime}=I_{T}-P_{X}=M_{X}
$$

Second, we will prove the statement that P_{X} and M_{X} are idempotent. The matrix A is idempotent if and only if $A^{n}=A$ for $n \in \mathbb{Z}_{++}$. Note that \mathbb{Z}_{++}is a set of strictly positive integers. Consider the projection matrix P_{X}. For the sufficiency for an idempotent matrix, prove the case of $n=2$. Then,

$$
P_{X} P_{X}=X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime}=X\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right)\left(X^{\prime} X\right)^{-1} X^{\prime}=X\left(X^{\prime} X\right)^{-1} X^{\prime}=P_{X}
$$

Thus, we conclude sufficiency for an idempotent matrix. Next, prove the necessity for an idempotent matrix with mathematical induction. First, consider the case of $n=1$. It is clear that the statement is true. Suppose that the statement is true for some $n \geq 2$. Clearly,

$$
P_{X}^{n+1}=P_{X}^{n} P_{X}=P_{X} P_{X}=X\left(X^{\prime} X\right)^{-1} X^{\prime}=P_{X}
$$

Thus, the statement holds for any n. Note that you can prove that M_{X} is idempotent using the property that P_{X} is idempotent. (proof is omitted, but the procedure is same).
Proof of Statement 2: Clearly,

$$
\begin{aligned}
& P_{X} X=\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X=X \\
& M_{X} X=\left(I_{T}-P_{X}\right) X=X-X=0
\end{aligned}
$$

Proof of Statement 3: Clearly,

$$
\begin{aligned}
& P_{X} M_{X}=P_{X}\left(I_{T}-P_{X}\right)=P_{X}-P_{X}=0 \\
& M_{X} P_{X}=\left(I_{T}-P_{X}\right) P_{X}=P_{X}-P_{X}=0
\end{aligned}
$$

2.2 Property of Idempotent Matrix

Let A be a $N \times N$ idempotent matrix. An idempotent matrix has the following useful properties:

1．Eigenvalue of idempotent matrix \mathbf{A} is 0 or 1 ．
2．An idempotent matrix \mathbf{A} is positive－semidefinite．
3． $\operatorname{rank}(\mathbf{A})=\operatorname{tr}(\mathbf{A})$
4．If an idempotent matrix \mathbf{A} is symmetric，then $\mathbf{u}^{\prime} \mathbf{A u} \sim \chi^{2}(r)$ where $\operatorname{rank}(\mathbf{A})=r$ and $\mathbf{u} \sim N\left(0, \mathbf{I}_{N}\right)$.

Proof of Statement 1：Eigenvalues λ are defined by $\mathbf{A x}=\lambda \mathbf{x}$ where $\mathbf{x} \neq \mathbf{0}$ is a corresponding eigenvector．The definition of idempotent matrix yields

$$
\begin{aligned}
\mathbf{A x} & =\lambda \mathbf{x} \\
\mathbf{A A x} & =\lambda \mathbf{x} \\
\mathbf{A}(\lambda \mathbf{x}) & =\lambda \mathbf{x} \\
\lambda(\mathbf{A x}) & =\lambda \mathbf{x} \\
\lambda^{2} \mathbf{x} & =\lambda \mathbf{x}
\end{aligned}
$$

Therefore，we obtain $\lambda(\lambda-1) \mathbf{x}=0$ ．By $\mathbf{x} \neq \mathbf{0}$ ，we have $\lambda=0,1$ ．
Proof of Statement 2：The statement that \mathbf{A} is positive－semidefinite is equivalent to the statement that all eigenvalues are non－negative．By statement $1, \mathbf{A}$ is positive－semidefinite．
Proof of Statement 3：Suppose that the rank of A is r ．There exists a $N \times r$ matrix B and a $r \times N$ matrix \mathbf{L} ，each of rank R ，such that $\mathbf{A}=\mathbf{B L}^{2}$ ．Then，

$$
\mathbf{B L B L}=\mathbf{A}^{2}=\mathbf{A}=\mathbf{B L}=\mathbf{B I}_{r} \mathbf{L}
$$

where \mathbf{I}_{r} is a $r \times r$ identity matrix．Thus，we obtain $\mathbf{L B}=\mathbf{I}_{r}$. By the property of trace，

$$
\operatorname{tr}(\mathbf{A})=\operatorname{tr}(\mathbf{B L})=\operatorname{tr}(\mathbf{L} \mathbf{B})=\operatorname{tr}\left(\mathbf{I}_{r}\right)=r=\operatorname{rank}(\mathbf{A}) .
$$

Proof of Statement 4：By symmetric matrix，there exists an orthogonal matrix \mathbf{C} such that $\mathbf{A}=$

[^2]$\mathbf{C} \Lambda \mathbf{C}^{\prime}$ where Λ is a diagonal matrix whose elements are eigenvalues λ_{i}, that is,
\[

\Lambda=\left($$
\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \lambda_{i} & \vdots \\
0 & \cdots & \lambda_{N}
\end{array}
$$\right)=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{N}\right)
\]

By the statement 3,

$$
\begin{align*}
& \operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{C} \Lambda \mathbf{C}^{\prime}\right)=\operatorname{rank}(\Lambda)=r \tag{6}\\
& \operatorname{rank}(\mathbf{A})=\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{C} \Lambda \mathbf{C}^{\prime}\right)=\operatorname{tr}\left(\Lambda \mathbf{C}^{\prime} \mathbf{C}\right)=\operatorname{tr}(\Lambda)=r \tag{7}
\end{align*}
$$

For the equation (6), the third equality holds because $\operatorname{rank}(E G)=\operatorname{rank}(G E)=\operatorname{rank}(G)$ where E is full-rank matrix, and an orthogonal matrix is full-rank. For the equation (7), the forth equality comes from the defenition of orthogonality, $\mathbf{C}^{\prime} \mathbf{C}=\mathbf{I}_{N}$. By this result and the statement 1, without loss of generality, we can define $\lambda_{i}=1$ for $i=1, \ldots, r$, and $\lambda_{i}=0$ for $i=r+1, \ldots, N$.

Next, let $\mathbf{z}=\mathbf{C}^{\prime} \mathbf{u}$. Then, $E[\mathbf{z}]=0$ and $E\left[\mathbf{z z}^{\prime}\right]=\mathbf{C}^{\prime} \mathbf{I}_{N} \mathbf{C}=\mathbf{I}_{N}$ by the defenition of orthogonality, $\mathbf{C}^{\prime} \mathbf{C}=\mathbf{I}_{N}$. This implies that $\mathbf{z} \sim N\left(0, \mathbf{I}_{N}\right)$.

Finally, we obtain

$$
\mathbf{u}^{\prime} \mathbf{A} \mathbf{u}=\mathbf{u}^{\prime} \mathbf{C} \Lambda \mathbf{C}^{\prime} \mathbf{u}=\mathbf{z}^{\prime} \Lambda \mathbf{z}=\sum_{i=1}^{r} z_{i}^{2}
$$

where $\Lambda=\operatorname{diag}(1, \ldots 1,0, \ldots 0)$. By the defenition of chi-squared distribution, $\mathbf{u}^{\prime} \mathbf{A u} \sim \chi^{2}(r)$.

[^0]: *e-mail: vge008kh@student.econ.osaka-u.ac.jp. Room 503. If you have any errors in handouts and materials, please contact me via e-mail.

[^1]: ${ }^{1}$ Let A be $m \times n$ matrix. $A^{\prime} M A$ is symmetric and positive-semidefinite if M is $m \times m$ symmetric and positive semidefinite. The proof is straightforward. Define b as any $n \times 1$ vector. Then, $b^{\prime} A^{\prime} M A b=c^{\prime} M c$ where $c=A b$ is larger than or equal to zero. By the defenition of positive-semidefinite matrix, $c^{\prime} M c \geq 0$. Hence, $b\left(A^{\prime} M A\right) b \geq 0$, that is, $A^{\prime} M A$ is positive-semidefinite

[^2]: ${ }^{2}$ This decomposition is known as rank factorization（階数因数分解）．

