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1 Solutions

1.1 Question 1

We will show that E(s2) = σ2. The OLS estimator of β is β̂ = (X ′X)−1X ′y. Substituting
y = Xβ + u into β̂ yields

β̂ = (X ′X)−1X ′(Xβ + u) = β + (X ′X)−1X ′u.

Then, we will obtain
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y −Xβ̂ = y −X(β + (X ′X)−1X ′u)

= (y −Xβ) +X(X ′X)−1X ′u

= (IT −X(X ′X)−1X ′)u. (1)

Let P ≡ X(X ′X)−1X ′. The matrix P is called the projection matrix, which maps the vectors
of response values (dependent variable) to the vector of fitted values. On the other hand, Define
M ≡ IT − P , which maps to vectors of response values to the vector of residual values. The matrix
P andM are idempotent and symmetric, that is, P 2 = P , P ′ = P ,M2 = M andM ′ = M (we will
review later).
Using equation (1), the estimator of σ2 is

s2 =
1

T − k
(Mu)′Mu

=
1

T − k
u′MMu

=
1

T − k
u′Mu. (2)

u′Mu is scalar because u andM are T × 1 and T × T matrices. Using properties of trace (see the
lecture note), we obtain

u′Mu = tr(u′Mu)

= tr(Muu′)

= tr((IT − (X ′X)−1X ′X)uu′)

= tr((IT − Ik)uu
′). (3)

Finally, the expectation of s2 is
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E(s2) =
1

T − k
E[tr((IT − Ik)uu

′)]

=
1

T − k
tr((IT − Ik)E(uu′))

=
1

T − k
σ2(tr(IT )− tr(Ik))

=
1

T − k
σ2(T − k)

= σ2.

1.2 Question 2

From the previous question, (T − k)s2 yields

(T − k)s2 = (y −Xβ̂)′(y −Xβ̂) = u′Mu,

Since M is symmetric and idempotent, rank(M) is equivalent to the value of trace, which leads to
tr(M) = T − k. By the assumption that u is normally distributed,

(T − k)s2

σ2
=

u′Mu

σ2
∼ χ2(T − k) (4)

1.3 Question 3

To show that OLS estimator is BLUE (i.e. best linear unbiased estimator), we need to prove that
other linear unbiased estimators have larger variances than the OLS estimator, that is, V (β̃)−V (β̂) ≥
0 where β̃ is other linear unbiased estimator.
The first step is to construct a linear unbiased estimator, β̃. Since a linear estimator is a function

of dependent variable, y, define β̃ = Cy where C is a k × T matrix. Then, the expectation of β̃ is

E(β̃) = E(C(Xβ + u)) = CXβ.

If β̃ is an unbiased estimator, it must hold that

CX = Ik, (5)
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where Ik is k × k identity matrix.
The second step is to derive the variance­covariance matrix of β̃, V (β̃). As in the lecture note, you

can assume C = D + (X ′X)−1X ′ without loss of generality, and calculate its variance­covariance
matrix. In this material, we derive the variance­covariance matrix without assuming the matrix form
of C. Assuming CX = Ik, we derive the variance­covariance matrix of β̃ as follows:

E[(β̃ − β)(β̃ − β)′] = E[Cu(Cu)′] = E[Cuu′C ′] = CE(uu′)C ′ = σ2CC ′.

The projection matrix P under OLS estimator is P = X(X ′X)−1X ′, which is a T × T matrix.
Moreover, the matrix M that makes the vector of residuals is M = I − P . Thus, P + M = IT .
Inserting P +M into the variance­covariance matrix of β̃ yields

V (β̃) = σ2CITC
′

= σ2C(P +M)C ′

= σ2[CPC ′ + CMC ′]

= σ2[CX(X ′X)−1X ′C + CMC ′]

= σ2[Ik(X
′X)−1Ik + CMC ′]

= σ2(X ′X)−1 + σ2CMC ′.

Since the variance­covariance matrix of β̂, OLS estimator, is β̂ = σ2(X ′X)−1, we obtain

V (β̃)− V (β̂) = σ2CMC ′.

BecauseM is idempotent,M is positive­semidefinite. SinceM is symmetric and positive­semidefinite,
CMC ′ is also symmetric and positive­semidefinite 1 . Thus, V (β̃) ≥ V (β̂) holds.

1Let A be m × n matrix. A′MA is symmetric and positive­semidefinite if M is m × m symmetric and positive
semidefinite. The proof is straightforward. Define b as any n × 1 vector. Then, b′A′MAb = c′Mc where c = Ab is
larger than or equal to zero. By the defenition of positive­semidefinite matrix, c′Mc ≥ 0. Hence, b(A′MA)b ≥ 0, that
is, A′MA is positive­semidefinite
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2 Review

2.1 Projection Matrix

Using the same notations as above, consider the regressionmodel, y = Xβ+u. TheOLS estimator
of β is given by β̂ = (X ′X)−1X ′y. Then, the fitted value of y is

ŷ = Xβ̂ = X(X ′X)−1X ′y = PXy

where PX ≡ X(X ′X)−1X ′. The matrix P is called the projection matrix. This matrix maps a
vector of response values to a vector of its fitted values. Using the projection matrix, we can express
residuals as follows:

y − ŷ = (IT − PX)y = MXy

whereMX = IT −PX = IT −X(X ′X)−1X ′, and IT is a T ×T identity matrix. The matrixM maps
a vector of response values to a vector of residual values. These two operators have the following
properties:� �

1. PX andMX are idempotent and symmetric;

2. PXX = X andMXX = 0;

3. PXMX = MXPX = 0� �
Proof of Statement 1: First, we will prove the statement that PX and MX are symmetric. About

the projection matrix, PX ,

P ′
X = (X(X ′X)−1X ′)′ = ((X ′X)−1X ′)′X ′

= X((X ′X)−1)′X ′

= X((X ′X)′)−1X ′

= X(X ′X)−1X ′ = PX .

Thus, we prove that P ′
X = PX . Using this, we deriveM ′

X = MX because
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M ′
X = (IT − PX)

′ = IT − P ′
X = IT − PX = MX .

Second, we will prove the statement that PX andMX are idempotent. The matrix A is idempotent
if and only if An = A for n ∈ Z++. Note that Z++ is a set of strictly positive integers. Consider the
projection matrix PX . For the sufficiency for an idempotent matrix, prove the case of n = 2. Then,

PXPX = X(X ′X)−1X ′X(X ′X)−1X ′ = X(X ′X)−1(X ′X)(X ′X)−1X ′ = X(X ′X)−1X ′ = PX .

Thus, we conclude sufficiency for an idempotent matrix. Next, prove the necessity for an idem­
potent matrix with mathematical induction. First, consider the case of n = 1. It is clear that the
statement is true. Suppose that the statement is true for some n ≥ 2. Clearly,

P n+1
X = P n

XPX = PXPX = X(X ′X)−1X ′ = PX .

Thus, the statement holds for anyn. Note that you can prove thatMX is idempotent using the property
that PX is idempotent. (proof is omitted, but the procedure is same).

Proof of Statement 2: Clearly,

PXX = (X(X ′X)−1X ′)X = X,

MXX = (IT − PX)X = X −X = 0.

Proof of Statement 3: Clearly,

PXMX = PX(IT − PX) = PX − PX = 0,

MXPX = (IT − PX)PX = PX − PX = 0.

2.2 Property of Idempotent Matrix

Let A be a N ×N idempotent matrix. An idempotent matrix has the following useful properties:
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� �
1. Eigenvalue of idempotent matrix A is 0 or 1.

2. An idempotent matrix A is positive­semidefinite.

3. rank(A) = tr(A)

4. If an idempotent matrix A is symmetric, then u′Au ∼ χ2(r) where rank(A) = r and
u ∼ N(0, IN).� �

Proof of Statement 1: Eigenvalues λ are defined by Ax = λx where x ̸= 0 is a corresponding
eigenvector. The definition of idempotent matrix yields

Ax = λx

AAx = λx

A(λx) = λx

λ(Ax) = λx

λ2x = λx

Therefore, we obtain λ(λ− 1)x = 0. By x ̸= 0, we have λ = 0, 1.
Proof of Statement 2: The statement that A is positive­semidefinite is equivalent to the statement

that all eigenvalues are non­negative. By statement 1, A is positive­semidefinite.
Proof of Statement 3: Suppose that the rank of A is r. There exists a N × r matrix B and a r×N

matrix L, each of rank R, such that A = BL 2 . Then,

BLBL = A2 = A = BL = BIrL,

where Ir is a r × r identity matrix. Thus, we obtain LB = Ir. By the property of trace,

tr(A) = tr(BL) = tr(LB) = tr(Ir) = r = rank(A).

Proof of Statement 4: By symmetric matrix, there exists an orthogonal matrix C such that A =

2This decomposition is known as rank factorization (階数因数分解).
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CΛC′ where Λ is a diagonal matrix whose elements are eigenvalues λi, that is,

Λ =


λ1 · · · 0

... λi
...

0 · · · λN

 = diag(λ1, · · · , λN).

By the statement 3,

rank(A) = rank(CΛC′) = rank(Λ) = r, (6)

rank(A) = tr(A) = tr(CΛC′) = tr(ΛC′C) = tr(Λ) = r. (7)

For the equation (6), the third equality holds because rank(EG) = rank(GE) = rank(G) where
E is full­rank matrix, and an orthogonal matrix is full­rank. For the equation (7), the forth equality
comes from the defenition of orthogonality, C′C = IN . By this result and the statement 1, without
loss of generality, we can define λi = 1 for i = 1, . . . , r, and λi = 0 for i = r + 1, . . . , N .
Next, let z = C′u. Then, E[z] = 0 and E[zz′] = C′INC = IN by the defenition of orthogonality,

C′C = IN . This implies that z ∼ N(0, IN).
Finally, we obtain

u′Au = u′CΛC′u = z′Λz =
r∑

i=1

z2i ,

where Λ = diag(1, . . . 1, 0, . . . 0). By the defenition of chi­squared distribution, u′Au ∼ χ2(r).
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