Econometrics I: Solutions of Homework 5

Hiroki Kato *

May 20, 2020

Contents

1	Solutions		
	1.1	Question 1	1
	1.2	Question 2	3
	1.3	Question 3	3
2	Review		
	2.1	Projection Matrix	5
	2.2	Property of Idempotent Matrix	6

1 Solutions

1.1 Question 1

We will show that $E(s^2) = \sigma^2$. The OLS estimator of β is $\hat{\beta} = (X'X)^{-1}X'y$. Substituting $y = X\beta + u$ into $\hat{\beta}$ yields

$$\hat{\beta} = (X'X)^{-1}X'(X\beta + u) = \beta + (X'X)^{-1}X'u.$$

Then, we will obtain

^{*}e-mail: vge008kh@student.econ.osaka-u.ac.jp. Room 503. If you have any errors in handouts and materials, please contact me via e-mail.

$$y - X\hat{\beta} = y - X(\beta + (X'X)^{-1}X'u)$$

$$= (y - X\beta) + X(X'X)^{-1}X'u$$

$$= (I_T - X(X'X)^{-1}X')u.$$
(1)

Let $P \equiv X(X'X)^{-1}X'$. The matrix P is called the *projection matrix*, which maps the vectors of response values (dependent variable) to the vector of fitted values. On the other hand, Define $M \equiv I_T - P$, which maps to vectors of response values to the vector of residual values. The matrix P and M are idempotent and symmetric, that is, $P^2 = P$, P' = P, $M^2 = M$ and M' = M (we will review later).

Using equation (1), the estimator of σ^2 is

$$s^{2} = \frac{1}{T - k} (Mu)' Mu$$

$$= \frac{1}{T - k} u' MMu$$

$$= \frac{1}{T - k} u' Mu.$$
(2)

u'Mu is scalar because u and M are $T \times 1$ and $T \times T$ matrices. Using properties of trace (see the lecture note), we obtain

$$u'Mu = tr(u'Mu)$$

$$= tr(Muu')$$

$$= tr((I_T - (X'X)^{-1}X'X)uu')$$

$$= tr((I_T - I_k)uu').$$
(3)

Finally, the expectation of s^2 is

$$E(s^2) = \frac{1}{T - k} E[tr((I_T - I_k)uu')]$$

$$= \frac{1}{T - k} tr((I_T - I_k)E(uu'))$$

$$= \frac{1}{T - k} \sigma^2(tr(I_T) - tr(I_k))$$

$$= \frac{1}{T - k} \sigma^2(T - k)$$

$$= \sigma^2.$$

1.2 Question 2

From the previous question, $(T-k)s^2$ yields

$$(T - k)s^2 = (y - X\hat{\beta})'(y - X\hat{\beta}) = u'Mu,$$

Since M is symmetric and idempotent, rank(M) is equivalent to the value of trace, which leads to tr(M) = T - k. By the assumption that u is normally distributed,

$$\frac{(T-k)s^2}{\sigma^2} = \frac{u'Mu}{\sigma^2} \sim \chi^2(T-k) \tag{4}$$

1.3 Question 3

To show that OLS estimator is BLUE (i.e. best linear unbiased estimator), we need to prove that other linear unbiased estimators have larger variances than the OLS estimator, that is, $V(\tilde{\beta}) - V(\hat{\beta}) \ge 0$ where $\tilde{\beta}$ is other linear unbiased estimator.

The first step is to construct a linear unbiased estimator, $\tilde{\beta}$. Since a linear estimator is a function of dependent variable, y, define $\tilde{\beta} = Cy$ where C is a $k \times T$ matrix. Then, the expectation of $\tilde{\beta}$ is

$$E(\tilde{\beta}) = E(C(X\beta + u)) = CX\beta.$$

If $\tilde{\beta}$ is an unbiased estimator, it must hold that

$$CX = I_k, (5)$$

where I_k is $k \times k$ identity matrix.

The second step is to derive the variance-covariance matrix of $\tilde{\beta}$, $V(\tilde{\beta})$. As in the lecture note, you can assume $C = D + (X'X)^{-1}X'$ without loss of generality, and calculate its variance-covariance matrix. In this material, we derive the variance-covariance matrix without assuming the matrix form of C. Assuming $CX = I_k$, we derive the variance-covariance matrix of $\tilde{\beta}$ as follows:

$$E[(\tilde{\beta} - \beta)(\tilde{\beta} - \beta)'] = E[Cu(Cu)'] = E[Cuu'C'] = CE(uu')C' = \sigma^2CC'.$$

The projection matrix P under OLS estimator is $P = X(X'X)^{-1}X'$, which is a $T \times T$ matrix. Moreover, the matrix M that makes the vector of residuals is M = I - P. Thus, $P + M = I_T$. Inserting P + M into the variance-covariance matrix of $\tilde{\beta}$ yields

$$V(\tilde{\beta}) = \sigma^2 C I_T C'$$

$$= \sigma^2 C (P+M)C'$$

$$= \sigma^2 [CPC' + CMC']$$

$$= \sigma^2 [CX(X'X)^{-1}X'C + CMC']$$

$$= \sigma^2 [I_k(X'X)^{-1}I_k + CMC']$$

$$= \sigma^2 (X'X)^{-1} + \sigma^2 CMC'.$$

Since the variance-covariance matrix of $\hat{\beta}$, OLS estimator, is $\hat{\beta} = \sigma^2(X'X)^{-1}$, we obtain

$$V(\tilde{\beta}) - V(\hat{\beta}) = \sigma^2 CMC'.$$

Because M is idempotent, M is positive-semidefinite. Since M is symmetric and positive-semidefinite, CMC' is also symmetric and positive-semidefinite 1 . Thus, $V(\tilde{\beta}) \geq V(\hat{\beta})$ holds.

¹Let A be $m \times n$ matrix. A'MA is symmetric and positive-semidefinite if M is $m \times m$ symmetric and positive semidefinite. The proof is straightforward. Define b as any $n \times 1$ vector. Then, b'A'MAb = c'Mc where c = Ab is larger than or equal to zero. By the defenition of positive-semidefinite matrix, $c'Mc \ge 0$. Hence, $b(A'MA)b \ge 0$, that is, A'MA is positive-semidefinite

Review 2

Projection Matrix 2.1

Using the same notations as above, consider the regression model, $y = X\beta + u$. The OLS estimator of β is given by $\hat{\beta} = (X'X)^{-1}X'y$. Then, the fitted value of y is

$$\hat{y} = X\hat{\beta} = X(X'X)^{-1}X'y = P_X y$$

where $P_X \equiv X(X'X)^{-1}X'$. The matrix P is called the projection matrix. This matrix maps a vector of response values to a vector of its fitted values. Using the projection matrix, we can express residuals as follows:

$$y - \hat{y} = (I_T - P_X)y = M_X y$$

where $M_X = I_T - P_X = I_T - X(X'X)^{-1}X'$, and I_T is a $T \times T$ identity matrix. The matrix M maps a vector of response values to a vector of residual values. These two operators have the following properties:

- 1. P_X and M_X are idempotent and symmetric;
- 2. $P_X X = X$ and $M_X X = 0$; 3. $P_X M_X = M_X P_X = 0$

Proof of Statement 1: First, we will prove the statement that P_X and M_X are symmetric. About the projection matrix, P_X ,

$$P'_{X} = (X(X'X)^{-1}X')' = ((X'X)^{-1}X')'X'$$

$$= X((X'X)^{-1})'X'$$

$$= X((X'X)')^{-1}X'$$

$$= X(X'X)^{-1}X' = P_{X}.$$

Thus, we prove that $P'_X = P_X$. Using this, we derive $M'_X = M_X$ because

$$M_X' = (I_T - P_X)' = I_T - P_X' = I_T - P_X = M_X.$$

Second, we will prove the statement that P_X and M_X are idempotent. The matrix A is idempotent if and only if $A^n = A$ for $n \in \mathbb{Z}_{++}$. Note that \mathbb{Z}_{++} is a set of strictly positive integers. Consider the projection matrix P_X . For the sufficiency for an idempotent matrix, prove the case of n = 2. Then,

$$P_X P_X = X(X'X)^{-1} X' X(X'X)^{-1} X' = X(X'X)^{-1} (X'X)(X'X)^{-1} X' = X(X'X)^{-1} X' = P_X.$$

Thus, we conclude sufficiency for an idempotent matrix. Next, prove the necessity for an idempotent matrix with mathematical induction. First, consider the case of n = 1. It is clear that the statement is true. Suppose that the statement is true for some $n \ge 2$. Clearly,

$$P_X^{n+1} = P_X^n P_X = P_X P_X = X(X'X)^{-1} X' = P_X.$$

Thus, the statement holds for any n. Note that you can prove that M_X is idempotent using the property that P_X is idempotent. (proof is omitted, but the procedure is same).

Proof of Statement 2: Clearly,

$$P_X X = (X(X'X)^{-1}X')X = X,$$

 $M_X X = (I_T - P_X)X = X - X = 0.$

Proof of Statement 3: Clearly,

$$P_X M_X = P_X (I_T - P_X) = P_X - P_X = 0,$$

 $M_X P_X = (I_T - P_X) P_X = P_X - P_X = 0.$

2.2 Property of Idempotent Matrix

Let A be a $N \times N$ idempotent matrix. An idempotent matrix has the following useful properties:

- 1. Eigenvalue of idempotent matrix **A** is 0 or 1.
- 2. An idempotent matrix **A** is positive-semidefinite.
- 3. $rank(\mathbf{A}) = tr(\mathbf{A})$
- 4. If an idempotent matrix $\bf A$ is symmetric, then $\bf u'Au \sim \chi^2(r)$ where $rank(\bf A)=r$ and $\bf u \sim N(0, \bf I_N)$.

Proof of Statement 1: Eigenvalues λ are defined by $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ where $\mathbf{x} \neq \mathbf{0}$ is a corresponding eigenvector. The definition of idempotent matrix yields

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
$$\mathbf{A}\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
$$\mathbf{A}(\lambda \mathbf{x}) = \lambda \mathbf{x}$$
$$\lambda(\mathbf{A}\mathbf{x}) = \lambda \mathbf{x}$$
$$\lambda^2 \mathbf{x} = \lambda \mathbf{x}$$

Therefore, we obtain $\lambda(\lambda - 1)\mathbf{x} = 0$. By $\mathbf{x} \neq \mathbf{0}$, we have $\lambda = 0, 1$.

Proof of Statement 2: The statement that **A** is positive-semidefinite is equivalent to the statement that all eigenvalues are non-negative. By statement 1, **A** is positive-semidefinite.

Proof of Statement 3: Suppose that the rank of **A** is r. There exists a $N \times r$ matrix **B** and a $r \times N$ matrix **L**, each of rank R, such that $A = BL^2$. Then,

$$BLBL = A^2 = A = BL = BI_rL,$$

where I_r is a $r \times r$ identity matrix. Thus, we obtain $LB = I_r$. By the property of trace,

$$tr(\mathbf{A}) = tr(\mathbf{BL}) = tr(\mathbf{LB}) = tr(\mathbf{I}_r) = r = rank(\mathbf{A}).$$

Proof of Statement 4: By symmetric matrix, there exists an orthogonal matrix C such that A =

²This decomposition is known as rank factorization (階数因数分解).

 $\mathbf{C}\Lambda\mathbf{C}'$ where Λ is a diagonal matrix whose elements are eigenvalues λ_i , that is,

$$\Lambda = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \lambda_i & \vdots \\ 0 & \cdots & \lambda_N \end{pmatrix} = diag(\lambda_1, \cdots, \lambda_N).$$

By the statement 3,

$$rank(\mathbf{A}) = rank(\mathbf{C}\Lambda\mathbf{C}') = rank(\Lambda) = r,$$
(6)

$$rank(\mathbf{A}) = tr(\mathbf{A}) = tr(\mathbf{C}\Lambda\mathbf{C}') = tr(\Lambda\mathbf{C}'\mathbf{C}) = tr(\Lambda) = r.$$
(7)

For the equation (6), the third equality holds because rank(EG) = rank(GE) = rank(G) where E is full-rank matrix, and an orthogonal matrix is full-rank. For the equation (7), the forth equality comes from the defenition of orthogonality, $\mathbf{C}'\mathbf{C} = \mathbf{I}_N$. By this result and the statement 1, without loss of generality, we can define $\lambda_i = 1$ for $i = 1, \ldots, r$, and $\lambda_i = 0$ for $i = r + 1, \ldots, N$.

Next, let $\mathbf{z} = \mathbf{C}'\mathbf{u}$. Then, $E[\mathbf{z}] = 0$ and $E[\mathbf{z}\mathbf{z}'] = \mathbf{C}'\mathbf{I}_N\mathbf{C} = \mathbf{I}_N$ by the defenition of orthogonality, $\mathbf{C}'\mathbf{C} = \mathbf{I}_N$. This implies that $\mathbf{z} \sim N(0, \mathbf{I}_N)$.

Finally, we obtain

$$\mathbf{u}'\mathbf{A}\mathbf{u} = \mathbf{u}'\mathbf{C}\mathbf{\Lambda}\mathbf{C}'\mathbf{u} = \mathbf{z}'\mathbf{\Lambda}\mathbf{z} = \sum_{i=1}^{r} z_i^2,$$

where $\Lambda = diag(1, \dots 1, 0, \dots 0)$. By the defenition of chi-squared distribution, $\mathbf{u}'\mathbf{A}\mathbf{u} \sim \chi^2(r)$.