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1 Solutions

1.1 (1)

A transformation matrixM is defined by

M = IT − 1

T
ii′,

*email: vge008kh@student.econ.osaka-u.ac.jp. Room 503. If you find any errors in handouts and materials,
please contact me via email.

1



where IT is T × T identity matrix 1. Then,

Mi = IT i−
1

T
i(i′i) = i− 1

T
iT = 0,

and

Me = IT e−
1

T
i(i′e) = e− 1

T
i

T∑
t=1

et = e.

Note that third equality comes from the property of the OLS estimator, that is,
∑

t et/T = ē = 0.

1.2 (2)

First, I will show the first equality. ByMe = e, premultiplying e onM yields

Me = My −MXβ̂

e = My −MXβ̂.

Then, we obtain

e′e = y′M ′My − β̂′X ′M ′MXβ̂ = y′My − β̂X ′MXβ̂

The second equality comes from the fact thatM is symmetric and idempotent. TheM is idempotent
because

M2 =

(
IT − 1

T
ii′
)(

IT − 1

T
ii′
)

= IT − 1

T
ii′ − 1

T
ii′ +

1

T 2
i(i′i)i′

= IT − 1

T
ii′ − 1

T
ii′ +

1

T 2
i(T )i′

= IT − 1

T
ii′ = M.

Second, I will show the second equality. ByMe = e andMi = 0, premultiplying e = y − iβ̂1 −
X2β̂2 onM gives

Me = My −Miβ̂1 −MX2β̂2

e = My −MX2β̂2

1This matrix is different from the matrixM that I used in solutions to HW5.
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Then, we obtain

e′e = (My −MX2β̂2)
′(My −MX2β̂2)

= y′My − β̂′
2X

′
2My − y′MX2β̂2 + β̂′

2X
′
2MX2β̂2

= y′My − β̂′
2X

′
2MX2β̂2 − β̂′

2X
′
2MX2β̂2 + β̂′

2X
′
2MX2β̂2

= y′My − β̂′
2X

′
2MX2β̂2.

The third equality comes from X ′
2My = X ′

2MX2β̂2. This holds because

X ′
2e = X ′

2My −X ′
2MX2β̂2

0 = X ′
2My −X ′

2MX2β̂2

Note thatX ′
2e = 0 holds sinceX ′e = X ′y−X ′Xβ̂ = (X ′X)β̂−X ′Xβ̂ = 0 by β̂ = (X ′X)−1X ′y.

1.3 (3)

Since y′My is a scalar,

R2 = 1− e′e

y′My
=

y′My

y′My
− e′e

y′My
=

y′My − e′e

y′My
=

β̂′
2X

′
2MX2β̂2

y′My

1.4 (4)

Rβ̂ = R(X ′X)−1X ′y = R(X ′X)−1X ′(Xβ + u) = Rβ +R(X ′X)−1X ′u

Since u is normally distributed, Rb is also normally distributed. Expectation and variance of Rb are
as follows:

E(Rβ̂) = Rβ

V (Rβ̂) = E[(Rb−Rβ)(Rb−Rβ)′] = E[R(X ′X)−1X ′uu′X ′(X ′X)−1R′] = σ2R(X ′X)−1R′

Thus, the distribution of Rb is

Rβ̂ ∼ N(Rβ, σ2R(X ′X)−1R′).
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1.5 (5)

By the question (4), we can replace Rβ by r if the null hypothesis is correct. Thus,

Rβ̂ ∼ N(r, σ2R(X ′X)−1R′),

or

(Rβ̂ − r) ∼ N(0, σ2R(X ′X)−1R′),

1.6 (6)

R =



0 1 0 · · · 0

0 0 1 · · · 0

... ... ... ... ...

0 0 0 · · · 1


= (0, Ik−1)

where R is (k − 1)× k matrix. Thus, G = k − 1 and r = 0.

1.7 (7)

We will show that, given R and r,

(Rβ̂ − r)′(R(X ′X)−1R′)−1(Rβ̂ − r) = β̂′
2X

′
2MX2β̂2.

By the solution to (6), define R = (0, Ik−1) and r = 0. Then, Rβ̂ − r = β̂2.
Next, given R and r as defined above, we will show (R(X ′X)−1R′)−1 = X ′

2MX2. First, by
X = (i,X2),

(X ′X)−1 =


 i′

X ′
2

(
i X2

)
−1

=

 i′i i′X2

X ′
2i X ′

2X2


−1

=

B11 B12

B21 B22
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where Bij is unknown matrices. Then, we have

R(X ′X)−1R′ =

(
0 Ik−1

)B11 B12

B21 B22


 0

Ik−1

 =

(
B21 B22

) 0

Ik−1

 = B22

Thus, we only need to calculate B22. By the property of the inverse of a partitioned matrix,

B22 = (X ′
2X2 −X ′

2i(i
′i)−1i′X2)

−1

= (X ′
2ITX2 −X ′

2(
1

T
ii′)X2)

−1

= (X ′
2(IT − 1

T
ii′)X2)

−1

= (X ′
2MX2)

−1

Hence, (R(X ′X)−1R′)−1 = ((X ′
2MX2)

−1)−1 = X ′
2MX2.

Finally, given R = (0, Ik−1) and r = 0, we obtain

(Rβ̂ − r)′(R(X ′X)−1R′)−1(Rβ̂ − r) = β̂′
2X

′
2MX2β̂2.

1.8 (8)

By solutions to (6) and (7), test statistic for H0 : β2 = 0 is

β̂′
2X

′
2MX2β̂2/(k − 1)

e′e/(T − k)
∼ F (k − 1, T − k)

We will show that

R2/(k − 1)

(1−R2)/(T − k)
=

β̂′
2X

′
2MX2β̂2/(k − 1)

e′e/(T − k)
,

where R2 is the coefficient of determination.
By solutions to (3), we obtain

(y′My)R2 = β̂′
2X

′
2MX2β̂2,

and,

(y′My)(1−R2) = e′e.
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Since y′My is scalar, we can obtain

β̂′
2X

′
2MX2β̂2/(k − 1)

e′e/(T − k)
=

R2/(k − 1)

(1−R2)/(T − k)

1.9 (9)

First, we test β = 0, using tstatistic. Recall that tstatistic is given by

t =
β̂ − β

s/
√∑

t(Xt − X̄)2
∼ t(T − k)

where s2 is unbiased and consistent estimator of σ2. Since V (β̂) = σ2/
∑

t(Xt − X̄)2, we can
calculate tstatistic as follows:

t =
β̂ − β

SE(β̂)
.

Thus,

t =
0.65− 0

0.240
= 2.70833

Under the degree of freedom is 4− 2 = 2, the test statistic at 1%, 5%, and 10% significance level is
9.9248, 4.3072, and 2.9200, respectively. Thus, we cannot reject the null hypothesis β = 0.
Second, we test β = 0, using F statistic with R2. By solutions to (8), a test statistic is given by

R2/(k − 1)

(1−R2)/(T − k)
=

0.786/(2− 1)

(1− 0.786)/(4− 2)
= 7.345794

Under F ∼ F (1, 2), the test statistic at 1%, 5%, and 10% significance level is 98.50251, 18.51282,
and 8.526316, respectively. Thus, we cannot reject the null hypothesis β = 0.
Overall, F test obtains the same result as ttest. Note that the square of tstatistic is approximate

to F statistic, that is, t2 = (2.70833)2 = 7.335069 ≈ 7.345794.
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