Econometrics I: Solutions of the homework \#8

LU ANG*

June 10, 2020

Contents

1 Question 1

1.1 (1)

We apply the Lagrange multiplier to calculate the restricted estimator. In order to minimize $(y-X \beta)^{\prime}(y-X \beta)$ with the restriction $R \beta=r$. We can write the Loss function as:

$$
L=(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})-2 \tilde{\lambda}^{\prime}(R \tilde{\beta}-r)
$$

Here $\tilde{\beta}$ and $\tilde{\lambda}$ are the estimators that minimize L. Then the F.O.C can be obtained:

$$
\begin{aligned}
& \frac{\partial L}{\partial \tilde{\beta}}=-2 X^{\prime}(y-X \tilde{\beta})-2 R^{\prime} \tilde{\lambda}=0 \\
& \frac{\partial L}{\partial \tilde{\lambda}}=-2(R \tilde{\beta}-r)=0
\end{aligned}
$$

Solving the equation for $\tilde{\beta}$ we have following expression:

$$
\begin{equation*}
\tilde{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y+\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda} \tag{1}
\end{equation*}
$$

[^0]Multiply R by both side we have following expression:

$$
R \tilde{\beta}=R \hat{\beta}+R\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}
$$

Because we have the restriction $R \tilde{\beta}=r$, we substitute the Left side:

$$
r=R \hat{\beta}+R\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}
$$

Thus we can solve $\tilde{\lambda}$ as:

$$
\tilde{\lambda}=\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta})
$$

Next we substitute $\tilde{\lambda}$ back into equation (1) we can obtain:

$$
\tilde{\beta}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta})
$$

$1.2 \quad$ (2)

In the previous section we have learned that:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) / G}{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) /(T-k)} \sim F(G, T-k)
$$

Where $G=\operatorname{Rank}(R)$
Using $\tilde{\beta}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta})$, we can derive that:

$$
\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)=\hat{\beta}-\tilde{\beta}
$$

Multiply R by both sides we can have the following expression:

$$
(R \hat{\beta}-r)=R(\hat{\beta}-\tilde{\beta})
$$

Substitute this expression back into the numerator we can obtain:

$$
\begin{aligned}
(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) & =(\hat{\beta}-\tilde{\beta})^{\prime} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R(\hat{\beta}-\tilde{\beta}) \\
& =(\hat{\beta}-\tilde{\beta})^{\prime} X^{\prime} X(\hat{\beta}-\tilde{\beta})
\end{aligned}
$$

Moreover the numerator is represented as follows:

$$
\begin{aligned}
(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})= & (y-X \hat{\beta}-X(\tilde{\beta}-\hat{\beta}))^{\prime}(y-X \hat{\beta}-X(\tilde{\beta}-\hat{\beta})) \\
= & (y-X \hat{\beta})^{\prime}(y-X \hat{\beta})+(\tilde{\beta}-\hat{\beta})^{\prime} X^{\prime} X(\tilde{\beta}-\hat{\beta}) \\
& -(y-X \hat{\beta})^{\prime} X(\tilde{\beta}-\hat{\beta})-(\tilde{\beta}-\hat{\beta})^{\prime} X^{\prime}(y-X \hat{\beta}) \\
= & (y-X \hat{\beta})^{\prime}(y-X \hat{\beta})+(\hat{\beta}-\tilde{\beta})^{\prime} X^{\prime} X(\hat{\beta}-\tilde{\beta})
\end{aligned}
$$

where $X^{\prime}(y-X \hat{\beta})=X^{\prime} \hat{u}=0$
Summarizing, we have following representation:

$$
\begin{aligned}
(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) & =(\hat{\beta}-\tilde{\beta})^{\prime} X^{\prime} X(\hat{\beta}-\tilde{\beta}) \\
& =\left(y-X \tilde{\beta}^{\prime}\right)^{\prime}(y-X \tilde{\beta})-(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) \\
& =\tilde{u}^{\prime} \tilde{u}-\hat{u}^{\prime} \hat{u}
\end{aligned}
$$

Therefore we have:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) / G}{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) /(T-k)}=\frac{\left(\tilde{u}^{\prime} \tilde{u}-\hat{u}^{\prime} \hat{u}\right) / G}{\hat{u}^{\prime} \hat{u} /(T-k)} \sim F(G, T-k)
$$

2 Question 2

2.1 (3)

We have the hypothesis as:

$$
H_{0}: \alpha_{1}=\alpha_{2}=0
$$

$$
H_{1}: \alpha_{1} \neq 0 \text { or } \alpha_{2} \neq 0
$$

The matrix form $R \beta=r$, where:

$$
\beta=\left(\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right), \quad R=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad r=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Notice in production function (2) does not contain the variables K_{t} and L_{t}, Therefore it satisfy our H_{0}, so that we can take production function (1) as our original regression and production function (2) as our restricted regression. i.e. $G=\operatorname{Rank}(R)=2$ and $T-k=(1997-1969)-3=25$

Thus we have:

$$
F=\frac{\left(\tilde{u}^{\prime} \tilde{u}-\hat{u}^{\prime} \hat{u}\right) / G}{\hat{u}^{\prime} \hat{u} /(T-k)} \sim F(2,25)
$$

where \tilde{u} is the residual from product function (2) and \hat{u} is the residual from product function (1). Recall that $\hat{u}^{\prime} \hat{u}=\hat{\sigma}_{(1)}^{2}\left(T-k_{(1)}\right)$ and $\tilde{u}^{\prime} \tilde{u}=\hat{\sigma}_{(2)}^{2}\left(T-k_{(2)}\right)$ Then the F scores is calculated as:

$$
F=\frac{(0.00354801 \times 26-0.00141869 \times 25) / 2}{0.00141869}=20.0117
$$

Under $F \sim F(2,25)$, the test statistic at $1 \%, 5 \%$, and 10% significance level are 5.57, 3.39, and 2.53, respectively. All are smaller than our F score. Thus, we should reject the null hypothesis.

2.2 (4)

In order to test whether the production function is homogeneous, we have the hypothesis as:

$$
\begin{aligned}
& H_{0}: \alpha_{1}+\alpha_{2}=1 \\
& H_{0}: \alpha_{1}+\alpha_{2} \neq 1
\end{aligned}
$$

The matrix form $R \beta=r$, where:

$$
\beta=\left(\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right), \quad R=\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right), \quad r=(1)
$$

Notice we can rewrite production function (2) as:

$$
\begin{aligned}
\log \left(Y_{t} / L_{t}\right) & =\beta_{0}+\beta_{1} \log \left(K_{t} / L_{t}\right)+u_{t} \\
\log Y_{t}-\log L_{t} & =\beta_{0}+\beta_{1} \log K_{t}-\beta_{1} \log L_{t}+u_{t} \\
\log Y_{t} & =\beta_{0}+\beta_{1} \log K_{t}+\left(1-\beta_{1}\right) \log L_{t}+u_{t}
\end{aligned}
$$

In this case if we view β_{1} as α_{1} and $\left(1-\beta_{1}\right)$ as α_{2}. it satisfy our $H_{0}: \alpha_{1}+\alpha_{2}=$ 1. Therefore we can take product function (1) as our original regression and product function (2) as our restricted regression. i.e. $G=\operatorname{Rank}(R)=1$, $T-k=28-3=25$

Thus we have:

$$
F=\frac{\left(\tilde{u}^{\prime} \tilde{u}-\hat{u}^{\prime} \hat{u}\right) / G}{\hat{u}^{\prime} \hat{u} /(T-k)} \sim F(1,25)
$$

Then the F scores is calculated as:

$$
F=\frac{(0.00354801 \times 26-0.00141869 \times 25)}{0.00141869}=40.0235
$$

Under $F \sim F(1,25)$, the test statistic at $1 \%, 5 \%$, and 10% significance level are $7.77,4.24$, and 2.92 , respectively. All are smaller than our F score. Thus, we should reject the null hypothesis.

2.3 (5)

In order to test whether there are structural changes, we have the hypothesis as:

$$
\begin{gathered}
H_{0}: \gamma_{3}=\gamma_{4}=\gamma_{5}=0 \\
H_{1}: \gamma_{3} \neq 0 \text { or } \gamma_{4} \neq 0 \text { or } \gamma_{5} \neq 0
\end{gathered}
$$

the matrix form $R \beta=r$, where:

$$
\beta=\left(\begin{array}{l}
\gamma_{0} \\
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3} \\
\gamma_{4} \\
\gamma_{5}
\end{array}\right), \quad R=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad r=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

In this case we consider product function (3) as our original regression and product function (1) as our restricted regression. i.e. $G=\operatorname{Rank}(R)=3$, $T-k=28-6=22$

Thus we have:

$$
F=\frac{\left(\tilde{u}^{\prime} \tilde{u}-\hat{u}^{\prime} \hat{u}\right) / G}{\hat{u}^{\prime} \hat{u} /(T-k)} \sim F(3,22)
$$

Where \tilde{u} is the residual from product function (1) and \hat{u} is the residual from product function (3). Then the F scores is calculated as:

$$
F=\frac{(0.00141869 \times 25-0.00145010 \times 22) / 3}{0.00145010}=0.8194
$$

Under $F \sim F(3,22)$, the test statistic at $1 \%, 5 \%$, and 10% significance level are $4.82,3.05$, and 2.35 , respectively. All are greater than our F score. Thus, we cannot reject the null hypothesis.

[^0]: *If you have any errors in handouts and materials, please contact me via lvang12@hotmail.com

