Econometrics I: Solutions of Homework \#9

Hiroki Kato *

June 14, 2020

Contents

1 Solutions 1
1.1 (1) 1
1.2 (2) 2
1.3 (3) 2
1.4 (4) 3
1.5 (5) 4

1 Solutions

1.1 (1)

Using the matrix of eigenvectors of Ω (denoted by A) and the diagonal matrix Λ whose elements are eigenvalues λ_{i}, the matrix Ω can be diagonalized as follows:

$$
A^{\prime} \Omega A=\Lambda,
$$

that is,

$$
\begin{equation*}
\Omega=A \Lambda A^{\prime} \tag{1}
\end{equation*}
$$

[^0]Since Ω is a positive definite matrix, all its eigenvalues are positive. Thus, Λ is factored into

$$
\Lambda=\Lambda^{1 / 2} \Lambda^{1 / 2}
$$

where $\Lambda^{1 / 2}=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right)$. Substituting in eq (1) gives

$$
\Lambda=A \Lambda^{1 / 2} \Lambda^{1 / 2} A^{\prime}=\left(A \Lambda^{1 / 2}\right)\left(A \Lambda^{1 / 2}\right)^{\prime}
$$

Thus, we obtain

$$
P=A \Lambda^{1 / 2}
$$

$1.2 \quad$ (2)

Since $\left\{u_{t}\right\}_{t=1}^{T}$ are mutually independent, $\operatorname{Cov}\left(u_{t}, u_{s}\right)=0$ for $t \neq s$. Thus, the variance-covariance matrix is given by

$$
E\left(u u^{\prime}\right)=\sigma^{2} \Omega=\sigma^{2}\left(\begin{array}{cccc}
z_{1}^{2} & 0 & \cdots & 0 \\
0 & z_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & z_{T}^{2}
\end{array}\right)
$$

$1.3 \quad$ (3)

Let us introduce the lag operator L such that $L^{s} x_{t}=x_{t-s}$ for $s \geq 1$. Then, a first-order autoregressive scheme, $u_{t}=\rho u_{t-1}+\epsilon_{t}$, can be rewritten as

$$
\begin{aligned}
(1-\rho L) u_{t} & =\epsilon_{t} \\
u_{t} & =(1-\rho L)^{-1} \epsilon_{t} .
\end{aligned}
$$

Without loss of generality, assume $|\rho|<1$. Then, the inverse of first lag operator results in a series of infinite differences, that is,

$$
\begin{aligned}
u_{t} & =\left(1+\rho L+\rho^{2} L^{2}+\cdots\right) \epsilon_{t} \\
& =\epsilon_{t}+\rho \epsilon_{t-1}+\rho^{2} \epsilon_{t-2}+\cdots
\end{aligned}
$$

Thus, $E\left(u_{t}\right)=0$ and the second-order moment of u_{t} is

$$
\begin{aligned}
E\left(u_{t}^{2}\right) & =E\left[\epsilon_{t}^{2}+\epsilon_{t}\left(\rho \epsilon_{t-1}+\rho^{2} \epsilon_{t-2}+\cdots\right)+\rho^{2} \epsilon_{t-1}^{2}+\rho \epsilon_{t-1}\left(\epsilon_{t}+\rho^{2} \epsilon_{t-2}+\cdots\right)+\cdots\right] \\
& =E\left[\epsilon_{t}^{2}+\rho^{2} \epsilon_{t-1}^{2}+\rho^{4} \epsilon_{t-2}^{2}+\cdots\right] \\
& =\left(1+\rho^{2}+\rho^{4}+\cdots\right) \sigma^{2}=\frac{1}{1-\rho} \sigma^{2}
\end{aligned}
$$

Note that $E\left(\epsilon_{t} \epsilon_{t-s}\right)=0$ since $\left\{\epsilon_{t}\right\}_{t}$ are mutually independent. Also, it is simple to establish that

$$
\begin{aligned}
E\left(u_{t} u_{t-s}\right) & =E\left[\epsilon_{t}\left(\epsilon_{t-s}+\rho \epsilon_{t-s-1}+\cdots\right)+\cdots+\rho^{s} \epsilon_{t-s}\left(\epsilon_{t-s}+\rho \epsilon_{t-s-1}+\cdots\right)+\cdots\right] \\
& =E\left(\rho^{s} \epsilon_{t-s}^{2}\right)=\rho^{s} \frac{\sigma^{2}}{1-\rho^{2}}
\end{aligned}
$$

This leads to $V\left(u_{t}\right)=\left(1-\rho^{2}\right)^{-1} \sigma^{2}$ and $\operatorname{Cov}\left(u_{t}, u_{t-s}\right)=\rho^{s}\left(1-\rho^{2}\right)^{-1} \sigma^{2}$. Finally, the variancecovariance matrix is given by

$$
E\left(u u^{\prime}\right)=\sigma^{2} \Omega=\sigma^{2} \frac{1}{1-\rho^{2}}\left(\begin{array}{ccccc}
1 & \rho & \rho^{2} & \cdots & \rho^{T-1} \\
\rho & 1 & \rho & \cdots & \rho^{T-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \cdots & 1
\end{array}\right)
$$

1.4 (4)

Let A be a $T \times T$ nonsingular transformation matrix. Then, we premultiply the regression model by A to obtain

$$
\begin{equation*}
A y=(A X) \beta+A u \tag{2}
\end{equation*}
$$

Then, the variance-covariance matrix of u_{t} is

$$
E\left(u u^{\prime}\right)=E\left(A u u^{\prime} A^{\prime}\right)=\sigma^{2} A \Omega A^{\prime} .
$$

If it were possible to specify A such that $A \Omega A^{\prime}=I_{T}$, then we could apply OLS to the transformed variables $A y$ and $A X$, and the estimates would have all the optimal properties of OLS (i.e. BLUE estimator).

Using the property which we proved in the question (1), we can find the matrix A which will hold $A \Omega A^{\prime}=I_{T}$. Since Ω is a positive definite matrix, there exists a nonsingular matrix P such that
$\Omega=P P^{\prime}$. Since P is nonsingular, $P^{-1} \Omega P^{\prime-1}=I_{T}$. The appropriate matrix A is given by

$$
A=P^{-1} .
$$

Applying OLS to the transformed regression model (2) then gives

$$
\begin{aligned}
b & =\left(X^{\prime} A^{\prime} A X\right)^{-1} X^{\prime} A^{\prime} A y \\
& =\left(X^{\prime} P^{\prime-1} P^{-1} X\right)^{-1} X^{\prime} P^{\prime-1} P^{-1} y \\
& =\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y
\end{aligned}
$$

$1.5 \quad$ (5)

Using the original regression model, we obtain the OLS estimator, $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$. Then, we have

$$
\begin{aligned}
& E(\hat{\beta})=E\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)=\beta \\
& V(\hat{\beta})=E\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right)=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

The variance of GLS estimator which we derive in the question (4) is given by

$$
\begin{aligned}
V(b) & =E\left(\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} u u^{\prime} \Omega^{-1} X\left(X^{\prime} \Omega^{-1} X\right)^{-1}\right) \\
& =\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} \Omega \Omega^{-1} X\left(X^{\prime} \Omega^{-1} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& V(\hat{\beta})-V(b) \\
= & \sigma^{2}\left[\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right] \Omega\left[\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right]^{\prime} \\
= & \sigma^{2} A \Omega A^{\prime}
\end{aligned}
$$

Ω is a variance-covariance matrix, which is a positive definite matrix. This implies that $A \Omega A^{\prime}$ is also a positive definite matrix (proof can be found at footnote 1 in the solution key \#5). Hence, $V(\hat{\beta})-V(b)$ is a positive definite matrix, which implies that the GLS estimator is more efficient than the OLS estimator if the error term is not homoscedasticity.

[^0]: *e-mail: vge008kh@student.econ.osaka-u.ac.jp. Room 503. If you find any errors in handouts and materials, please contact me via e-mail.

