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1 Solutions

1.1 (1)

Using the matrix of eigenvectors of Ω (denoted by A) and the diagonal matrix Λ whose elements
are eigenvalues λi, the matrix Ω can be diagonalized as follows:

A′ΩA = Λ,

that is,

Ω = AΛA′ (1)
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Since Ω is a positive definite matrix, all its eigenvalues are positive. Thus, Λ is factored into

Λ = Λ1/2Λ1/2

where Λ1/2 = diag(
√
λ1, . . . ,

√
λn). Substituting in eq (1) gives

Λ = AΛ1/2Λ1/2A′ = (AΛ1/2)(AΛ1/2)′.

Thus, we obtain

P = AΛ1/2.

1.2 (2)

Since {ut}Tt=1 are mutually independent,Cov(ut, us) = 0 for t ̸= s. Thus, the variancecovariance
matrix is given by

E(uu′) = σ2Ω = σ2



z21 0 · · · 0

0 z22 · · · 0

... ... ... ...

0 0 · · · z2T


1.3 (3)

Let us introduce the lag operator L such that Lsxt = xt−s for s ≥ 1. Then, a firstorder autore
gressive scheme, ut = ρut−1 + ϵt, can be rewritten as

(1− ρL)ut = ϵt

ut = (1− ρL)−1ϵt.

Without loss of generality, assume |ρ| < 1. Then, the inverse of first lag operator results in a series
of infinite differences, that is,

ut = (1 + ρL+ ρ2L2 + · · · )ϵt
= ϵt + ρϵt−1 + ρ2ϵt−2 + · · · .
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Thus, E(ut) = 0 and the secondorder moment of ut is

E(u2
t ) = E[ϵ2t + ϵt(ρϵt−1 + ρ2ϵt−2 + · · · ) + ρ2ϵ2t−1 + ρϵt−1(ϵt + ρ2ϵt−2 + · · · ) + · · · ]

= E[ϵ2t + ρ2ϵ2t−1 + ρ4ϵ2t−2 + · · · ]

= (1 + ρ2 + ρ4 + · · · )σ2 =
1

1− ρ
σ2

Note that E(ϵtϵt−s) = 0 since {ϵt}t are mutually independent. Also, it is simple to establish that

E(utut−s) = E[ϵt(ϵt−s + ρϵt−s−1 + · · · ) + · · ·+ ρsϵt−s(ϵt−s + ρϵt−s−1 + · · · ) + · · · ]

= E(ρsϵ2t−s) = ρs
σ2

1− ρ2

This leads to V (ut) = (1 − ρ2)−1σ2 and Cov(ut, ut−s) = ρs(1 − ρ2)−1σ2. Finally, the variance
covariance matrix is given by

E(uu′) = σ2Ω = σ2 1

1− ρ2



1 ρ ρ2 · · · ρT−1

ρ 1 ρ · · · ρT−2

... ... ... ... ...

ρT−1 ρT−2 ρT−3 · · · 1


1.4 (4)

Let A be a T × T nonsingular transformation matrix. Then, we premultiply the regression model
by A to obtain

Ay = (AX)β + Au. (2)

Then, the variancecovariance matrix of ut is

E(uu′) = E(Auu′A′) = σ2AΩA′.

If it were possible to specify A such that AΩA′ = IT , then we could apply OLS to the transformed
variables Ay and AX , and the estimates would have all the optimal properties of OLS (i.e. BLUE
estimator).
Using the property which we proved in the question (1), we can find the matrix A which will hold

AΩA′ = IT . Since Ω is a positive definite matrix, there exists a nonsingular matrix P such that
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Ω = PP ′. Since P is nonsingular, P−1ΩP ′−1 = IT . The appropriate matrix A is given by

A = P−1.

Applying OLS to the transformed regression model (2) then gives

b = (X ′A′AX)−1X ′A′Ay

= (X ′P ′−1P−1X)−1X ′P ′−1P−1y

= (X ′Ω−1X)−1X ′Ω−1y

1.5 (5)

Using the original regression model, we obtain the OLS estimator, β̂ = (X ′X)−1X ′y. Then, we
have

E(β̂) = E(β + (X ′X)−1X ′u) = β,

V (β̂) = E((X ′X)−1X ′uu′X(X ′X)−1) = σ2(X ′X)−1X ′ΩX(X ′X)−1.

The variance of GLS estimator which we derive in the question (4) is given by

V (b) = E((X ′Ω−1X)−1X ′Ω−1uu′Ω−1X(X ′Ω−1X)−1)

= σ2(X ′Ω−1X)−1X ′Ω−1ΩΩ−1X(X ′Ω−1X)−1

= σ2(X ′Ω−1X)−1.

Then,

V (β̂)− V (b)

=σ2[(X ′X)−1X ′ − (X ′Ω−1X)−1X ′Ω−1]Ω[(X ′X)−1X ′ − (X ′Ω−1X)−1X ′Ω−1]′

=σ2AΩA′

Ω is a variancecovariance matrix, which is a positive definite matrix. This implies that AΩA′ is
also a positive definite matrix (proof can be found at footnote 1 in the solution key #5). Hence,
V (β̂) − V (b) is a positive definite matrix, which implies that the GLS estimator is more efficient
than the OLS estimator if the error term is not homoscedasticity.
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