Econometrics I: Solutions of Homework #11

Hiroki Kato *

July 3, 2020

Contents

1	Solutions			
	1.1	(1)	1	
	1.2	(2)	2	
	1.3	(3)	3	
	1.4	(4)	4	

1 Solutions

1.1 (1)

Since we assume u_t is normally distributed with $E(u_t) = 0$ and $V(u_t) = \sigma^2$, the density function of u_t is given by

$$f(u_t) = \frac{1}{(2\pi\sigma^2)^{(1/2)}} \exp\left(-\frac{1}{2\sigma^2}u_t^2\right).$$

By the mutual independent assumption, the joint density function of u_1, \dots, u_T is given by

$$f(u_1,\ldots,u_T) = rac{1}{(2\pi\sigma^2)^{(T/2)}} \expigg(-rac{1}{2\sigma^2}\sum_{t=1}^T u_t^2igg)$$

^{*}e-mail: vge008kh@student.econ.osaka-u.ac.jp. Room 503. If you find any errors in handouts and materials, please contact me via e-mail.

Transforming u_t , we have the following likelihood function;¹

$$L(\alpha, \beta, \sigma^{2}|y_{1}, \dots, y_{T}) \equiv \frac{1}{(2\pi\sigma^{2})^{(T/2)}} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{t=1}^{T} (y_{t} - \alpha - \beta x_{t})^{2}\right). \tag{1}$$

1.2 (2)

To obtain the log-likelihood function, we take a natural logarithm of (1) as follows:

$$\log L(\alpha, \beta, \sigma^{2} | y_{1}, \dots, y_{T}) = -\frac{T}{2} \log(2\pi) - \frac{T}{2} \log(\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{t=1}^{T} (y_{t} - \alpha - \beta x_{t})^{2}$$

Taking a first-order derivative with respect to unknown parameters $(\alpha, \beta, \sigma^2)$ yields

$$\frac{\partial L(\alpha, \beta, \sigma^2 | y_1, \dots, y_T)}{\partial \alpha} = \frac{1}{\sigma^2} \sum_{t=1}^T (y_t - \alpha - \beta x_t) = 0$$
 (2)

$$\frac{\partial L(\alpha, \beta, \sigma^2 | y_1, \dots, y_T)}{\partial \beta} = \frac{1}{\sigma^2} \sum_{t=1}^T (y_t - \alpha - \beta x_t) x_t = 0$$
(3)

$$\frac{\partial L(\alpha, \beta, \sigma^2 | y_1, \dots, y_T)}{\partial \sigma^2} = -\frac{T}{2} \frac{1}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{t=1}^T (y_t - \alpha - \beta x_t)^2 = 0$$

$$\tag{4}$$

Rewriting the equation (2) and the equation (3) yields

$$T\bar{y} - \tilde{\alpha}T - \tilde{\beta}T\bar{x} = 0,$$
$$\sum_{t} y_{t}x_{t} - \tilde{\alpha}T\bar{x} - \tilde{\beta}\sum_{t} x_{t}^{2} = 0,$$

where $\bar{y} = \sum_t y_t/T$ and $\bar{x} = \sum_t x_t/T$.

First, using the first equation, we can obtain the ML estimator of α , denoted by $\tilde{\alpha}$, as follows;

$$\tilde{\alpha} = \bar{y} - \tilde{\beta}\bar{x}.$$

Substituting this estimator into the second equation, we obtain the ML estimator of β , denoted by

¹We implicitly assume that x_t is non-stochastic fixed variable.

 $\tilde{\beta}$, as follows;

$$-\tilde{\beta}\left[\sum_{t} x_{t}^{2} - T\bar{x}^{2}\right] + \sum_{t} y_{t}x_{t} - T\bar{x}\bar{y} = 0$$

$$\tilde{\beta} = \frac{\sum_{t} y_{t}x_{t} - T\bar{x}\bar{y}}{\sum_{t} x_{t}^{2} - T\bar{x}^{2}}$$

$$\tilde{\beta} = \frac{\sum_{t} (y_{t} - \bar{y})(x_{t} - \bar{x})}{\sum_{t} (x_{t} - \bar{x})^{2}}$$

Solving the equation (4) gives the ML estimator of σ^2 , denoted by $\tilde{\sigma}^2$, as follows;

$$\tilde{\sigma}^2 = \frac{\sum_{t=1}^{T} (y_t - \tilde{\alpha} - \tilde{\beta}x_t)^2}{T}$$

In summary, the ML estimator of θ is

$$\tilde{\theta} = (\tilde{\alpha}, \tilde{\beta}, \tilde{\sigma}^2)' = \left(\bar{y} - \tilde{\beta}\bar{x}, \frac{\sum_t (y_t - \bar{y})(x_t - \bar{x})}{\sum_t (x_t - \bar{x})^2}, \frac{\sum_{t=1}^T (y_t - \tilde{\alpha} - \tilde{\beta}x_t)^2}{T}\right)'.$$

1.3 (3)

By the equation (2), (3), and (4),

$$\begin{split} \frac{\partial^2 L(\alpha,\beta,\sigma^2|y_1,\ldots,y_T)}{\partial \alpha^2} &= -\frac{T}{\sigma^2} \\ \frac{\partial^2 L(\alpha,\beta,\sigma^2|y_1,\ldots,y_T)}{\partial \beta^2} &= -\frac{\sum_t x_t^2}{\sigma^2} \\ \frac{\partial^2 L(\alpha,\beta,\sigma^2|y_1,\ldots,y_T)}{\partial (\sigma^2)^2} &= \frac{T}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{t=1}^T (y_t - \alpha - \beta x_t)^2 = \frac{T}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{t=1}^T u_t^2 \\ \frac{\partial^2 L(\alpha,\beta,\sigma^2|y_1,\ldots,y_T)}{\partial \alpha \partial \beta} &= -\frac{\sum_t x_t}{\sigma^2} \\ \frac{\partial^2 L(\alpha,\beta,\sigma^2|y_1,\ldots,y_T)}{\partial \alpha \partial \sigma^2} &= -\frac{1}{\sigma^4} \sum_{t=1}^T (y_t - \alpha - \beta x_t) = -\frac{1}{\sigma^4} \sum_{t=1}^T u_t \\ \frac{\partial^2 L(\alpha,\beta,\sigma^2|y_1,\ldots,y_T)}{\partial \beta \partial \sigma^2} &= -\frac{1}{\sigma^4} \sum_{t=1}^T (y_t - \alpha - \beta x_t) x_t = -\frac{1}{\sigma^4} \sum_{t=1}^T u_t x_t \end{split}$$

By the distributional assumption, we have $\sum_t E(u_t) = 0$, $\sum_t E(u_t)x_t = 0$, and $\sum_t E(u_t^2) = \sum_t [E(u_t^2) - E(u_t)] = \sum_t V(u_t) = T\sigma^2$. Thus, the information matrix $I(\theta)$ is given by

$$I(\theta) = -E\left(\frac{\partial^2 L(\alpha, \beta, \sigma^2 | y_1, \dots, y_T)}{\partial \theta \partial \theta'}\right) = \begin{pmatrix} \frac{T}{\sigma^2} & \frac{\sum_t x_t}{\sigma^2} & 0\\ \frac{\sum_t x_t}{\sigma^2} & \frac{\sum_t x_t^2}{\sigma^2} & 0\\ 0 & 0 & \frac{T}{2\sigma^4} \end{pmatrix}$$

1.4 (4)

Step 1: Variance-Covariance Matrix of MLE

By the Cramer-Rao lower bound theorem, the inverse of information matrix $I(\theta)^{-1}$ provides a lower bound of the variance-covariance matrix for unbiased estimators of θ .² Then, the variance-covariance matrix of $\tilde{\theta}$ is

$$\begin{pmatrix} \frac{\sigma^2}{T} \frac{\sum_t x_t^2}{\sum_t (x_t - \bar{x})^2} & -\sigma^2 \frac{\bar{x}}{\sum_t (x_t - \bar{x})^2} & 0\\ -\sigma^2 \frac{\bar{x}}{\sum_t (x_t - \bar{x})^2} & \frac{\sigma^2}{\sum_t (x_t - \bar{x})^2} & 0\\ 0 & 0 & \frac{2\sigma^4}{T} \end{pmatrix}$$

Step 2: Derive the expectation and variance of OLSE

The OLS estimator of β , denoted by $\hat{\beta}$, is equivalent to the ML estimator of β , denoted by $\tilde{\beta}$. That is,

$$\hat{\beta} = \frac{\sum_{t} (y_t - \bar{y})(x_t - \bar{x})}{\sum_{t} (x_t - \bar{x})^2}.$$

Thus, we have $E(\hat{\beta}) = \beta$ and $V(\hat{\beta}) = \sigma^2/(\sum_t (x_t - \bar{x})^2)$. This implies that there is no difference between the MLE and the OLSE of β .

The OLS estimator of σ^2 is given by

$$\hat{\sigma}^2 = \frac{1}{T-2} \sum_{t=1}^{T} (y_t - \tilde{\alpha} - \tilde{\beta} x_t)^2.$$

²Try to derive by yourself

This estimator is unbiased: $E(\hat{\sigma}^2) = \sigma^2$. Since the OLSE is different from the ML estimator of β , $\tilde{\beta}$. the ML estimator is biased estimator of σ^2 , that is,

$$E(\tilde{\sigma}^2) = \frac{T-2}{T}E(\hat{\sigma^2}) = \frac{T-2}{T}\sigma^2.$$