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1 Solutions

1.1 (1)

Since we assume u; is normally distributed with F(u;) = 0 and V' (u;) = o2, the density function

of u; is given by
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By the mutual independent assumption, the joint density function of uy, . .., ur is given by
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Transforming u,, we have the following likelihood function;'
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To obtain the log-likelihood function, we take a natural logarithm of (1) as follows:
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Taking a first-order derivative with respect to unknown parameters (o, 3, 0%) yields
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Rewriting the equation (2) and the equation (3) yields

Ty—aT — BTz =0,

Zytxt—&T?U—Bzxf =0,
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where gy =) ,y/Tandz =), x,/7T.
First, using the first equation, we can obtain the ML estimator of o, denoted by &, as follows;

y — B

Substituting this estimator into the second equation, we obtain the ML estimator of 3, denoted by

'"We implicitly assume that x; is non-stochastic fixed variable.



5, as follows;
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Solving the equation (4) gives the ML estimator of o2, denoted by 52, as follows;
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In summary, the ML estimator of 6 is
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By the equation (2), (3), and (4),
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By the distributional assumption, we have >, E(u;) = 0, >, E(uy)z, = 0, and Y, E(u?) =
S EW?) — E(u)] =Y., V(ut) = To?. Thus, the information matrix 1(6) is given by
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Step 1: Variance-Covariance Matrix of MLE
By the Cramer-Rao lower bound theorem, the inverse of information matrix 7(6)~! provides a
lower bound of the variance-covariance matrix for unbiased estimators of §.> Then, the variance-

covariance matrix of 0 is
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Step 2: Derive the expectation and variance of OLSE
The OLS estimator of 3, denoted by B , 1s equivalent to the ML estimator of 3, denoted by B That

is,
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Thus, we have E((3) = 8 and V(3) = 02/(3_,(x; — Z)?). This implies that there is no difference
between the MLE and the OLSE of 3.
The OLS estimator of o2 is given by
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2Try to derive by yourself



This estimator is unbiased: F(6?) = o2. Since the OLSE is different from the ML estimator of /3,

,5’ . the ML estimator is biased estimator of o2, that is,




