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1 Solutions: Question 1

1.1 (1)

OLS estimator of β is given by

β̂ = (X ′X)−1X ′y = β + (X ′X)−1X ′u = β +

(
1

T

T∑
t=1

XtX
′
t

)−1(
1

T

T∑
t=1

Xtut

)
, (1)
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where Xt is k × 1 vector whose elements are explanatory variables for observetion t. Taking the
probability limit to both sides yields

plim
T→∞

β̂ = β + lim
T→∞

(
1

T

T∑
t=1

XtX
′
t

)−1

plim
T→∞

(
1

T

T∑
t=1

Xtut

)
(2)

First, we assume the following stationarity condition:

lim
T→∞

1

T

T∑
t=1

XtX
′
t = Mxx. (3)

Then, by g(Xn)
p→ g(X) if Xn

p→ X , we have

plim
T→∞

(
1

T

T∑
t=1

XtX
′
t

)−1

= M−1
xx . (4)

We further assume zero covariance between X and u, that is,

plim
T→∞

(
1

T

T∑
t=1

Xtut

)
= 0. (5)

By these two assumptions, we finally obtain

plim
T→∞

β̂ = β +M−1
xx · 0 = β. (6)

We can show the consistency of OLSE.

1.2 (2)

Greenberg and Webster (1983) states the central limit theorem as follows:

Z1, . . . , Zn are mutually independent. Zi is distributed with mean µ and variance Σi for
i = 1, . . . , n. Then, we have the follwing result:

1√
n

n∑
i=1

(Zi − µ)
d→ N(0,Σ),

where

Σ = lim
n→∞

(
1

n

n∑
i=1

Σi

)
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Using this theorem, we derive the asymptotic distribution of 1√
n
X ′u. Define Zi = Xtut. By the

assumption of ut, µ = E(Zi) = 0 and the variance of Zi is given by

Σi = V (Xtut) = E[(Xtut)(Xtut)
′] = σ2XtX

′
t. (7)

Then, we obtain Σ as follows:

Σ = lim
T→∞

(
1

n

T∑
t=1

σ2XtX
′
t

)
= σ2 lim

T→∞

(
1

n

T∑
t=1

XtX
′
t

)
= σ2Mxx. (8)

By the central limit theorm, we have

1√
n
X ′u =

1√
n

T∑
t=1

(Xtut − 0)
d→ N(0, σ2Mxx). (9)

1.3 (3)

We rewrite the equation (1) as follows:

√
T (β̂ − β) =

(
1

T

T∑
t=1

XtX
′
t

)−1(
1√
T

T∑
t=1

Xtut

)
. (10)

We use the following proerty: zn = Hnyn
d→ N(Hµ,HΩH ′) where Hn is an r × k matrix with

plimn→∞Hn = H and yn is a ×1 vector with yn
d→ N(µ,Ω). Because the equation (10) is seen as

the form zn,
√
T (β̂ − β) has a limiting normal distribution with zero mean and variance given by

σ2M−1
xx MxxM

−1
xx = σ2M−1

xx . (11)

Thus, we can write

√
T (β̂ − β)

d→ N(0, σ2M−1
xx ). (12)
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2 Solutions: Question 2

2.1 (1)

The log­likelihood function is

logLT (θ) = log
T∏
i=1

f(Xi; θ) =
T∑
i=1

log f(Xi; θ). (13)

The maximum likelihood estimator is defined by

θ̂ ∈ argmax
θ

1

T

T∑
i=1

log f(Xi; θ). (14)

Assuming the domain of Xi does not depend on the parameter θ, we define the following expec­
tation of log f(Xi; θ) as

logL(θ) = E[log f(Xi; θ)] =

∫
(log f(Xi; θ))f(Xi|θ0)dx, (15)

where θ0 is a unknown true parameter. The function logL(θ) is maximized at θ = θ0, that is,
logL(θ) ≤ logL(θ0) for any θ bacuase

E[log f(Xi; θ)− log f(Xi; θ0)]

=E

[
log

f(Xi; θ)

f(Xi; θ0)

]
≤E

[
f(Xi; θ)

f(Xi; θ0)
− 1

]
=

∫ (
f(Xi; θ)

f(X;θ0)
− 1

)
f(Xi; θ0)dx

=

∫
f(Xi; θ)dx−

∫
f(Xi; θ0)dx = 0.

Note that logx ≤ x− 1.
By the weak law of large numbers, for any θ, T−1 logLT (θ) → logL(θ). By defenition, θ̂ is the

maximizer of T−1 logLT (θ). Thus, the probability limit of T−1 logLT (θ) also maximizes logL(θ).
This implies that θ̂ p→ θ0.
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2.2 (2)

Applying the central limit theorem with unequal variance yields

√
T

(
1

T

∂ logL(θ)
∂θ

− µ

)
=

1√
T

T∑
i=1

(
∂ log f(Xi; θ)

∂θ
− µ

)
d→ N(0,Σ), (16)

where ∂
∂θ

log f(Xi; θ) is distributed with mean µ and variance Σi, and Σ = limT→∞(T−1
∑T

i=1Σi).
From (16), we have

lim
T→∞

E

[
1

T

∂ logL(θ)
∂θ

]
= µ, (17)

lim
T→∞

T · Var
[
1

T

∂ logL(θ)
∂θ

]
= Σ. (18)

We need the expectation and variance of ∂
∂θ

logL(θ). BecauseL(θ) is a joint distribution,
∫
L(θ)dx =

1. Taking the first­order derivative with respect to θ on both sides yields∫
∂L(θ)

∂θ
dx = 0∫

∂ logL(θ)
∂θ

L(θ)dx = 0

E

[
∂ logL(θ)

∂θ

]
= 0.

Thus, we obtain

lim
T→∞

E

[
1

T

∂ logL(θ)
∂θ

]
= lim

T→∞

1

T
E

[
∂ logL(θ)

∂θ

]
= 0 = µ. (19)

To obtain the variance, taking the second­order derivative of
∫
L(θ)dx = 1 with respect to θ,∫

∂2 logL(θ)
∂θ∂θ′

L(θ)dx+

∫
∂ logL(θ)

∂θ

∂ logL(θ)
∂θ′

L(θ)dx = 0

−E

[
∂2 logL(θ)

∂θ∂θ′

]
= E

[
∂ logL(θ)

∂θ

∂ logL(θ)
∂θ′

]
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Thus, we obtain the variance as follows:

Var
[
∂ logL(θ)

∂θ

]
=E

[
∂ logL(θ)

∂θ

∂ logL(θ)
∂θ′

]
− E

[
∂ logL(θ)

∂θ

]2
=E

[
∂ logL(θ)

∂θ

∂ logL(θ)
∂θ′

]
=− E

[
∂2 logL(θ)

∂θ∂θ′

]
=I(θ), (20)

where I(θ) is the information matrix. This leads to

lim
T→∞

T · Var
[
1

T

∂ logL(θ)
∂θ

]
= lim

T→∞

1

T
Var

[
1

T

∂ logL(θ)
∂θ

]
= lim

T→∞

1

T
I(θ) = Σ. (21)

Hence, the asymptotic distribution is

1√
T

T∑
i=1

∂ log f(Xi; θ)

∂θ

d→ N(0,Σ) (22)

where Σ = limT→∞ T−1I(θ).

2.3 (3)

Taking the first­order approximation of ∂
∂θ

logL(θ̂) = 0 around θ̂ = θ yields

∂ logL(θ)
∂θ

+
∂2 logL(θ)

∂θ∂θ′
(θ̂ − θ) = 0.

We rewrite it as follows:

θ̂ − θ = −
(
∂2 logL(θ)

∂θ∂θ′

)−1
∂ logL(θ)

∂θ

√
T (θ̂ − θ) =

(
− 1

T

∂2 logL(θ)
∂θ∂θ′

)−1(
1√
T

∂ logL(θ)
∂θ

)
. (23)

Note that

− 1

T

∂ logL(θ)
∂θ∂θ′

→ lim
T→∞

1

T
E

(
−∂ logL(θ)

∂θ∂θ′

)
= lim

T→∞

1

T
I(θ) = Σ.
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SinceΣ is symmetric, using the Slutsky’s theorem, we have the asymptotic distribution of
√
T (θ̂−θ)

as follows:

√
T (θ̂ − θ)

d→ N(0,Σ−1ΣΣ−1) (24)
d→ N(0,Σ−1) (25)
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