Econometrics I: Solutions of the homework \#14

LU ANG*

July 21, 2020

Contents

1 Question 1

$1.1 \quad(1)$

When X and u are correlated that is to say $E\left(X^{\prime} u\right) \neq 0$, Thus the OLSE can be written as:

$$
\hat{\beta}=\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{n} X^{\prime} u \longrightarrow \beta+M_{x x}^{-1} M_{x u} \neq 0
$$

where:

$$
\frac{1}{n} X^{\prime} X \longrightarrow M_{x x}, \quad \frac{1}{n} X^{\prime} u \longrightarrow M_{x u}
$$

Which imply that $\hat{\beta} \neq \beta$. In such case OLSE is inconsistent

[^0]
1.2 (2)

the matrix Z is not correlated with X and u which satisfies the orthogonal condition $\frac{1}{n} Z^{\prime} u \longrightarrow M_{z u}=0$. Multiplying Z^{\prime} on both sides of the regression model $y={ }^{n} X \beta+u$, we obtain:

$$
Z^{\prime} y=Z^{\prime} X \beta+Z^{\prime} u
$$

Dividing n on both sides of the above equation and take plim on both sides. Then we obtain the following:

$$
\operatorname{plim}\left(\frac{1}{n} Z^{\prime} y\right)=p \lim \left(\frac{1}{n} Z^{\prime} X\right) \beta+\operatorname{plim}\left(\frac{1}{n} Z^{\prime} u\right)=\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right) \beta
$$

Accordingly, we obtain:

$$
\beta=\left(\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right)\right)^{-1} \operatorname{plim}\left(\frac{1}{n} Z^{\prime} y\right)
$$

Therefore:

$$
\beta_{I V}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y
$$

$1.3 \quad$ (3)

Assume the followings:

$$
\frac{1}{n} Z^{\prime} X \longrightarrow M_{z x}, \quad \frac{1}{n} Z^{\prime} Z \longrightarrow M_{z z}, \quad \frac{1}{n} Z^{\prime} u \longrightarrow 0
$$

Asymptotic Distribution of $\beta_{I V}$:

$$
\beta_{I V}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y=\left(Z^{\prime} X\right)^{-1} Z^{\prime}(X \beta+u)=\beta+\left(Z^{\prime} X\right)^{-1} Z^{\prime} u
$$

which is rewritten as:

$$
\sqrt{n}\left(\beta_{I V}-\beta\right)=\left(\frac{1}{n} Z^{\prime} X\right)^{-1}\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right)
$$

Applying the Central Limit Theorem to $\frac{1}{\sqrt{n}} Z^{\prime} u$, we have the following result:

$$
\frac{1}{\sqrt{n}} Z^{\prime} u \rightarrow N\left(0, \sigma^{2} M_{z z}\right)
$$

Therefore:

$$
\sqrt{n}\left(\beta_{I V}-\beta\right)=\left(\frac{1}{n} Z^{\prime} X\right)^{-1}\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right) \rightarrow N\left(0, \sigma^{2} M_{z x}^{-1} M_{z z} M_{z x}^{\prime-1}\right)
$$

[^0]: *If you have any errors in handouts and materials, please contact me via lvang12@hotmail.com

