0Oooao

2 Maximum Likelihood Estimation (MLE, [ [] [] ) —
More Formally Review

1. We have random variables X;, X, - - -, X,,, which are assumed to be mutually

independently and identically distributed.

2. The distribution function of {X;}?, is f(x;6), where x = (x;,x2,---,x,) and
0=(u2).
Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(-) is defined as L(6; x) = f(x;0).
Note that f(x;0) = [], f(x;;0) when X;, X5, -+, X,, are mutually indepen-
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dently and identically distributed.

The maximum likelihood estimator (MLE) of 6 is 8 such that:

max L(6; X). = max log L(6; X).
0 0

MLE satisfies the following two conditions:
X dlog L(0; X)

0.
(a) 50
0% log L(0; X
(b) % is a negative definite matrix.

. Fisher’s information matrix (0 OO0 OO0 0O OO O O) is defined as:

0% log L(6; X))

1(6) = -E
© ( 06000’
where we have the following equality:

P log L(6; X)\ _ _ 0log L(H; X) dlog L(6; X)\ _ dlog L(6; X)
—E( 9000’ )=E( 90 o0 J=V( 90 )
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Proof of the above equality:

f L(9; x)dx =1

Take a derivative with respect to 6.

OL(o:
f ©: 40
00

(We assume that (i) the domain of x does not depend on 6 and (ii) the derivative
0L(0; x)
00

Rewriting the above equation, we obtain:

f 0log L(6; x)
00

exists.)

L(6; x)dx = 0,

1.e.,
E(W) 0.
06
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Again, differentiating the above with respect to 6, we obtain:

& logL(#;x) dlog L(6; x) OL(6; x)
f “ae08 L(6; x)dx + f 50 50 dx

0% log L(6; x) dlog L(6; x) 8 log L(H; x)
= | ——==2""19:
f deoy DA+ f 80 o0
0% log L(6; X) dlog L(6; X) dlog L(6; X)
-E E
(e )+ E—2 Py

L(6; x)dx

)=o0.

Therefore, we can derive the following equality:

. 0% log L(6; X) _E dlog L(6; X) dlog L(6; X) _v dlog L(6; X)
0606’ B 00 o0 B 00

dlog L(0; X))
goero) o,
a6

where the second equality utilizes E(
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4. Cramer-Rao Lower Bound (D 0000000 O0O0O): (1)
Suppose that an unbiased estimator of 6 is given by s(X).

Then, we have the following:
V(s(X)) = (1)

Proof:

The expectation of s(X) is:
E(s(X)) = f s(x)L(6; x)dx.
Differentiating the above with respect to 6,
OE(s(X)) f OL(9; x) f 0log L(6; x)
_—— _— = —L :
50 s(x) 50 dx s(x) 50 (6; x)dx

dlog L(6; X))

= Cov (s(X), 50
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For simplicity, let s(X) and 6 be scalars.

Then,
IE(s(X)\ dlog L6; X)\\ dlog L(6; X)
(—89 ) = (COV (s(X), B — )) =p°V(isX)V (—89 )
<V (s(X)V (—a log aL@(e; X)) ,

dlog L(6; X) .
where p denotes the correlation coefficient between s(X) and w, ie

86
oo 21020
p =
W\/ alogL(e X))

Note that |p| < 1.
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Therefore, we have the following inequality:

1.e.,

06

IE(s(X))
06

2 .
) < V(s(X) V(alogL(H,X))’

(6E<s(X>> )2
09
- (8 log L(6; X))
00

V(s(X)) >

Especially, when E(s(X)) = 6,

1 _ -1
V(s(X)) > ~ ( T X)) = (1O)".
06>

Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) = (1)),
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where 1(0) is defined as:

0% log L(6; X)
16)= _E( 9000’ )
_E 0log L(6; X) 0log L(6; X) _v dlog L(6; X)
B 90 0 - 90 '

The variance of any unbiased estimator of 6 is larger than or equal to (1(6))~".
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5. Asymptotic Normality of MLE:

Let 6 be MLE of 6.
As n goes to infinity, we have the following result:

-1
Vn@ -6 — N[O, 1im(@) ]

n—oo n

10
where it is assumed that lim (2) converges.

n—oo n
That is, when 7 is large, 6 is approximately distributed as follows:
d~N(0.ae) ™).

Suppose that s(X) = 6.

When n is large, V(s(X)) is approximately equal to (1(9))_1.
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Practically, we utilize the following approximated distribution:
§~N(0.a@™).
Then, we can obtain the significance test and the confidence interval for 6

. Central Limit Theorem: Let X;, X;, ---, X, be mutually independently dis-
tributed random variables with mean E(X;) = yx and variance V(X;) = 0> < oo

fori=1,2,---,n.
Define X = (1/n) Y2, X;.
Then, the central limit theorem is given by:

X-EX) X-pu
/V(?) o/\n

Note that E(X) = u and V(X) = o%/n.

— N(,1).
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That is,
— — 1 n . 2
Vn(X W) = NG i; (X; —u) — N(@O,0).

Note that E(X) = u and nV(X) = 2.

In the case where X; is a vector of random variable with mean u and variance

Y < oo, the central limit theorem is given by:

VaX —p) = —= > (X;=p) — NO.%).
i=1

1
i -

Note that E(X) = u and nV(X) = .
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7. Central Limit Theorem II: Let X;, X5, ---, X,, be mutually independently
distributed random variables with mean E(X;) = u and variance V(X;) = O'? for

i=1,2,---,n.

Assume:

Define X = (1/n) Y1, X;.

Then, the central limit theorem is given by:

X-EX) X-pu

$@5_o+ﬁ

X — _Ln._ N 2
W@m-W;@u) N, 0?).

— N, D),

1.e.,

Note that E(X) = u and nV(X) — o2
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In the case where X; is a vector of random variable with mean u and variance

%, the central limit theorem is given by:

VX —p) = — > (X;— ) — N(O,),
i=1

1

\n 4
. 1 ¢
where ¥ = lim — 3 < oo,

n—oo n

i=1
Note that E(X) = p and nV(X) — X.

[Review of Asymptotic Theories]

e Convergence in Probability (D 0 0O0O) X, — aq, i.e., X converges in

probability to a, where a is a fixed number.
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e Convergence in Distribution (0 0 0 0) X, — X, i.e., X converges in
distribution to X. The distribution of X,, converges to the distribution of X as n

goes to infinity.

Some Formulas
X, and Y, : Convergence in Probability

Z, . Convergence in Distribution

o If X, — a,then f(X,) — f(a).
e IfX, — aandY, — b,then f(X,Y,) — f(ab).

e IfX, — aandZ, — Z, then X,Z, — aZ,i.e., aZ is distributed with

mean E(aZ) = aE(Z) and variance V(aZ) = a*V(2).
[End of Review]
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8. Weak Law of Large Numbers (I O O 0 0 00 ) — Review:

n random variables X;, X», - -+, X,, are assumed to be mutually independently

and identically distributed, where E(X;) = u and V(X;) = 0 < co.
Then, X — puasn —> oo, which is called the weak law of large numbers.
— Convergence in probability
— Proved by Chebyshev’s inequality
9. Some Formulas of Expectaion and Variance in Multivariate Cases
— Review:
A vector of randam variavle X: E(X) =pand VIX) = E(X - )X -w)) =X

Then, E(AX) = Au and V(AX) = AXA’.
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10.

Proof:
E(AX) = AE(X) = Au
V(AX) = E(AX - Au)(AX — Ap)') = E(A(X — i)(AX — p))’)
= E(AX - )X —p)'A”) = AE((X — i)(X — ))A" = AV(X)A" = AXA’
Asymptotic Normality of MLE — Proof:
The density (or probability) function of X; is given by f(x;; 6).
The likelihood function is: L(6; x) = f(x;6) = [, f(x:;0),
where x = (X1, X2, -+, X,).

MLE of 6 results in the following maximization problem:

max log L(6; x).
0
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A solution of the above problem is given by MLE of 6, denoted by 6.

That is, § is given by the 6 which satisfies the following equation:

0log L(6; x) _ Z": dlog f(x;; 6)

=0.
06 00

i=1

dlog f(Xi;6) .
06

the ith random variable, i.e., X; in the Central Limit Theorem II.

Replacing x; by the underlying random variable X;, is taken as

Consider applying Central Limit Theorem II as follows:

«910gf(X,,9) 1 <& dlog f(X;; 6) . _
Z -B(- ) SRS Lolog L:X) _ 1 8log L))

i=1 a9 _n 00 n 00
1 < dlog f(X:;0) \/V 18log L(6; X)
\/V(Z Z o ) G—a )
Note that
Zn: dlog f(X;;60)  dlog L(0; X)
90 B 90
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In this case, we need the following expectation and variance:

E(l Z 6logf(X,-;6)) _ E(lﬁlogL(H;X)) _o,

n & 00 n 00
and
1 - dlog f(X;;6) 1 0log L(6; X) 1
V(- —— ) =V(-———) = =1(0).
(n; 00 ) V(n 00 ) n? ©
Olog L(6; X Olog L(6; X
Note that E(%) =0 and V(%) = 1(0).
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Thus, the asymptotic distribution of

19log L(6;X) _ 1\~ dlog f(Xi;6)
n 00 n — 00
is given by:
1~ dlog f(Xi:60) 1 < dlog f(X;;6)
il =T i A = e Jvel
\/ﬁ(n 121: 00 <n ; 00 )
1 0log L(6; X) 1 dlog L(6; X)
- \/_( 90 E(n 90 ))
1 dlog L(6; X)
= _—° 27 )
N7 50 — N(0,%)
where
1 0 dlog f(X;;0)y 1~ dlog f(Xi;0)\ 1 0log L(6; X)
nV(n ; 00 ) - nV(; 00 ) B nV( 00 )
= 11(0) — 2.
n
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That is,
1 dlog L(6; X)

NAL

where X = (X1, X5, -+, X,).

— N(0,2),

Now, replacing 6 by 6, consider the asymptotic distribution of

b dlog L(6; X)
N 90 ’

which is expanded around 6 = 6 as follows:

1 dlog L(6; X) 1 010gL(9;X)+ 1 0*logL(6;X) -

0= 6—0).
N N N
Therefore,
1 logL(6;X) - 1 dlog L(6; X)
TR g~ T8RN N, 3).
i o O ET ©0.2)
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The left-hand side is rewritten as:

1 6*logL(6;X) - 1 8% log L(6; X)
e e

N )(9 ~9.

Then,

. 10%log L(9; X)\-1, 1 0log L(6; X)
Vil =0~ (=) (% )

—s N(,27'Ex7Y = N,Z7h).

Using the law of large number, note that

1 6% log L(6; X) o1 0% log L(6; X)
__Z P A lim = [-p(Z e =272/
N 0000  noen ( 5006 )
1 log L(0: X 1
= lim - (V(M)) — lim -1(6) = %,
n—oo N 0 n—oo N
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1.

16*log L(G; X)\-1, 1 dlog L(6; X
(_w) ](_w) has the same asymptotic distribu-

n 0006’ \n 00
. . 1 dlog L(8; X)
1
tion as X <_\/ﬁ B a— )

Optimization (OJ O [J ):
MLE of 6 results in the following maximization problem:

max log L(6; x).
0

‘We often have the case where the solution of 0 is not derived in closed form.

— Optimization procedure

0= dlog L(6;x) _ dlog L(6*; x) . 9% log L(6*; x)

90 96 aeoe 00

Solving the above equation with respect to 6, we obtain the following:

& log L(6";x)\ ' 8log L(6"; x)
0000’ 00 '

ezm—(
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Replace the variables as follows:

0 —> 9(i+1)’ 0* N 6(!)
Then, we have:
D) _ g0 0% log L(6Y; x) B dlog L(6"; x)
B 9000’ 90 '

— Newton-Raphson method (U O O OO OOOOOO)

0% log L(6; 0% log L(6;

0006 0006
timization algorithm:

), we obtain the following op-

girh — g (E (62 log L(Q(i); x) ))—1 dlog L(Q(i); x)

06000’ 00
. - (i) .
_ 0(1) + (1(9(1))) 1 810g g(g@ . x)

— Method of Scoring (I 0 0 0)
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