2 Maximum Likelihood Estimation (MLE, $)$ — More Formally Review

- 1. We have random variables X_1, X_2, \dots, X_n , which are assumed to be mutually independently and identically distributed.
- 2. The distribution function of $\{X_i\}_{i=1}^n$ *i*_{i-1} is $f(x; \theta)$, where $x = (x_1, x_2, \dots, x_n)$ and $\theta = (\mu, \Sigma).$

Note that *X* is a vector of random variables and *x* is a vector of their realizations (i.e., observed data).

Likelihood function $L(\cdot)$ is defined as $L(\theta; x) = f(x; \theta)$.

Note that $f(x; \theta) = \prod_{i=1}^{n}$ $\int_{i=1}^{n} f(x_i; \theta)$ when X_1, X_2, \dots, X_n are mutually independently and identically distributed.

The maximum likelihood estimator (MLE) of θ is θ such that:

$$
\max_{\theta} L(\theta; X). \qquad \Longleftrightarrow \qquad \max_{\theta} \log L(\theta; X).
$$

MLE satisfies the following two conditions:

(a)
$$
\frac{\partial \log L(\theta; X)}{\partial \theta} = 0.
$$

(b) $\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}$ is a negative definite matrix.

3. Fisher's information matrix (The same section of \mathbf{S}) is defined as:

$$
I(\theta) = -\mathbf{E}\Big(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\Big),
$$

where we have the following equality:

$$
-\mathrm{E}\Big(\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\Big)=\mathrm{E}\Big(\frac{\partial \log L(\theta;X)}{\partial \theta}\frac{\partial \log L(\theta;X)}{\partial \theta'}\Big)=\mathrm{V}\Big(\frac{\partial \log L(\theta;X)}{\partial \theta}\Big)
$$

Proof of the above equality:

$$
\int L(\theta; x) \mathrm{d}x = 1
$$

Take a derivative with respect to θ .

$$
\int \frac{\partial L(\theta; x)}{\partial \theta} dx = 0
$$

(We assume that (i) the domain of *x* does not depend on θ and (ii) the derivative ∂*L*(θ; *x*) $\frac{\partial}{\partial \theta}$ exists.)

Rewriting the above equation, we obtain:

$$
\int \frac{\partial \log L(\theta; x)}{\partial \theta} L(\theta; x) \mathrm{d}x = 0,
$$

i.e.,

$$
E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0.
$$

Again, differentiating the above with respect to θ , we obtain:

$$
\int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial L(\theta; x)}{\partial \theta} dx
$$

=
$$
\int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) dx
$$

=
$$
E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) + E\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = 0.
$$

Therefore, we can derive the following equality:

$$
-E\left(\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right) = E\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\frac{\partial \log L(\theta;X)}{\partial \theta'}\right) = V\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right),
$$

where the second equality utilizes $E(\theta)$ $\partial \log L(\theta; X)$ $\frac{L(\theta;X)}{\partial \theta}$ $= 0.$ 4. **Cramer-Rao Lower Bound (** $\qquad \qquad$): $(I(\theta))^{-1}$

Suppose that an unbiased estimator of θ is given by *s*(*X*).

Then, we have the following:

$$
V(s(X)) \ge (I(\theta))^{-1}
$$

Proof:

The expectation of $s(X)$ is:

$$
E(s(X)) = \int s(x)L(\theta; x)dx.
$$

Differentiating the above with respect to θ ,

$$
\frac{\partial E(s(X))}{\partial \theta'} = \int s(x) \frac{\partial L(\theta; x)}{\partial \theta'} dx = \int s(x) \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) dx
$$

$$
= \text{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)
$$

For simplicity, let $s(X)$ and θ be scalars.

Then,

$$
\left(\frac{\partial E(s(X))}{\partial \theta}\right)^2 = \left(Cov\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)\right)^2 = \rho^2 V(s(X)) V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)
$$

$$
\leq V(s(X)) V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),
$$

where ρ denotes the correlation coefficient between *s*(*X*) and $\frac{\partial \log L(\theta; X)}{\partial \theta}$ $\frac{L(\theta, \Lambda)}{\partial \theta}$, i.e.,

$$
\rho = \frac{\text{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)}{\sqrt{\text{V}(s(X))}\sqrt{\text{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}}.
$$

Note that $|\rho| \leq 1$.

Therefore, we have the following inequality:

$$
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^2 \leq \mathrm{V}(s(X)) \, \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),
$$

i.e.,

$$
V(s(X)) \ge \frac{\left(\frac{\partial E(s(X))}{\partial \theta}\right)^2}{V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}
$$

Especially, when $E(s(X)) = \theta$,

$$
V(s(X)) \ge \frac{1}{-E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta^2}\right)} = (I(\theta))^{-1}.
$$

Even in the case where $s(X)$ is a vector, the following inequality holds.

$$
V(s(X)) \ge (I(\theta))^{-1},
$$

where $I(\theta)$ is defined as:

$$
I(\theta) = -E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right)
$$

= $E\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right).$

The variance of any unbiased estimator of θ is larger than or equal to $(I(\theta))^{-1}$.

5. Asymptotic Normality of MLE:

Let $\tilde{\theta}$ be MLE of θ .

As *n* goes to infinity, we have the following result:

$$
\sqrt{n}(\tilde{\theta} - \theta) \longrightarrow N\left(0, \lim_{n \to \infty} \left(\frac{I(\theta)}{n}\right)^{-1}\right),
$$

it is assumed that $\lim_{n \to \infty} \left(\frac{I(\theta)}{n}\right)$ converges.

where it is assumed that $\lim_{n\to\infty}$ *n* converges.

That is, when *n* is large, $\tilde{\theta}$ is approximately distributed as follows:

$$
\tilde{\theta} \sim N\left(\theta, \left(I(\theta)\right)^{-1}\right).
$$

Suppose that $s(X) = \tilde{\theta}$.

When *n* is large, $V(s(X))$ is approximately equal to $(I(\theta))^{-1}$.

Practically, we utilize the following approximated distribution:

$$
\tilde{\theta} \sim N\left(\theta, \left(I(\tilde{\theta})\right)^{-1}\right).
$$

Then, we can obtain the significance test and the confidence interval for θ

6. **Central Limit Theorem:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma^2 < \infty$ for $i = 1, 2, \dots, n$.

Define $\overline{X} = (1/n) \sum_{i=1}^{n}$ $_{i=1}^{n} X_{i}$.

Then, the central limit theorem is given by:

$$
\frac{\overline{X} - \mathcal{E}(\overline{X})}{\sqrt{\mathcal{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1).
$$

Note that $E(\overline{X}) = \mu$ and $V(\overline{X}) = \sigma^2/n$.

That is,

$$
\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).
$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance $\Sigma < \infty$, the central limit theorem is given by:

$$
\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma).
$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \Sigma$.

7. **Central Limit Theorem II:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma_i^2$ for $i = 1, 2, \cdots, n$.

Assume:

$$
\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \sigma_i^2 < \infty.
$$

Define $\overline{X} = (1/n) \sum_{i=1}^{n}$ $_{i=1}^{n} X_{i}$.

Then, the central limit theorem is given by:

$$
\frac{\overline{X} - \mathcal{E}(\overline{X})}{\sqrt{\mathcal{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1),
$$

i.e.,

$$
\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).
$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance Σ_i , the central limit theorem is given by:

$$
\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma),
$$

where
$$
\Sigma = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \Sigma_i < \infty
$$
.
 Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \Sigma$.

[Review of Asymptotic Theories]

• Convergence in Probability ($X_n \longrightarrow a$, i.e., *X* converges in probability to *a*, where *a* is a fixed number.

• Convergence in Distribution ($X_n \longrightarrow X$, i.e., *X* converges in distribution to *X*. The distribution of X_n converges to the distribution of *X* as *n* goes to infinity.

Some Formulas

 X_n and Y_n : Convergence in Probability

Zⁿ : Convergence in Distribution

• If
$$
X_n \longrightarrow a
$$
, then $f(X_n) \longrightarrow f(a)$.

- If $X_n \longrightarrow a$ and $Y_n \longrightarrow b$, then $f(X_n Y_n) \longrightarrow f(ab)$.
- If $X_n \longrightarrow a$ and $Z_n \longrightarrow Z$, then $X_n Z_n \longrightarrow aZ$, i.e., aZ is distributed with mean $E(aZ) = aE(Z)$ and variance $V(aZ) = a^2V(Z)$.

[End of Review]

8. Weak Law of Large Numbers ($)$ — Review:

n random variables X_1, X_2, \dots, X_n are assumed to be mutually independently and identically distributed, where $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$.

Then, $\overline{X} \longrightarrow \mu$ as $n \longrightarrow \infty$, which is called the **weak law of large numbers.**

 \rightarrow Convergence in probability

→ Proved by Chebyshev's inequality

9. Some Formulas of Expectaion and Variance in Multivariate Cases — Review:

A vector of randam variavle *X*: $E(X) = \mu$ and $V(X) \equiv E((X - \mu)(X - \mu)') = \Sigma$

Then, $E(AX) = A\mu$ and $V(AX) = A\Sigma A'$.

Proof:

$$
E(AX) = AE(X) = A\mu
$$

\n
$$
V(AX) = E((AX - A\mu)(AX - A\mu)') = E(A(X - \mu)(A(X - \mu))')
$$

\n
$$
= E(A(X - \mu)(X - \mu)'A') = AE((X - \mu)(X - \mu)')A' = AV(X)A' = A\Sigma A'
$$

10. Asymptotic Normality of MLE — Proof:

The density (or probability) function of X_i is given by $f(x_i; \theta)$.

The likelihood function is: $L(\theta; x) \equiv f(x; \theta) = \prod_{i=1}^{n}$ $\sum_{i=1}^n f(x_i; \theta)$,

where $x = (x_1, x_2, \dots, x_n)$.

MLE of θ results in the following maximization problem:

$$
\max_{\theta} \log L(\theta; x).
$$

A solution of the above problem is given by MLE of θ , denoted by $\tilde{\theta}$.

That is, $\tilde{\theta}$ is given by the θ which satisfies the following equation:

$$
\frac{\partial \log L(\theta; x)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(x_i; \theta)}{\partial \theta} = 0.
$$

Replacing x_i by the underlying random variable X_i , $\frac{\partial \log f(X_i; \theta)}{\partial \theta}$ $\frac{\partial \Theta}{\partial \theta}$ is taken as the *i*th random variable, i.e., X_i in the **Central Limit Theorem II**.

Consider applying Central Limit Theorem II as follows:

$$
\frac{\frac{1}{n}\sum_{i=1}^n\frac{\partial \log f(X_i;\theta)}{\partial \theta}-E\left(\frac{1}{n}\sum_{i=1}^n\frac{\partial \log f(X_i;\theta)}{\partial \theta}\right)}{\sqrt{V\left(\frac{1}{n}\sum_{i=1}^n\frac{\partial \log f(X_i;\theta)}{\partial \theta}\right)}}=\frac{\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}-E\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right)}{\sqrt{V\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right)}}.
$$

Note that

$$
\sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta} = \frac{\partial \log L(\theta; X)}{\partial \theta}
$$

In this case, we need the following expectation and variance:

$$
E\left(\frac{1}{n}\sum_{i=1}^n\frac{\partial \log f(X_i;\theta)}{\partial \theta}\right)=E\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right)=0,
$$

and

$$
V\Big(\frac{1}{n}\sum_{i=1}^n\frac{\partial \log f(X_i;\theta)}{\partial \theta}\Big) = V\Big(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\Big) = \frac{1}{n^2}I(\theta).
$$

Note that
$$
E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0
$$
 and $V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = I(\theta)$.

Thus, the asymptotic distribution of

$$
\frac{1}{n}\frac{\partial \log L(\theta; X)}{\partial \theta} = \frac{1}{n}\sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta}
$$

is given by:

$$
\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial\log f(X_i;\theta)}{\partial\theta} - \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial\log f(X_i;\theta)}{\partial\theta}\right)\right)
$$

$$
= \sqrt{n}\left(\frac{1}{n}\frac{\partial\log L(\theta;X)}{\partial\theta} - \mathbb{E}\left(\frac{1}{n}\frac{\partial\log L(\theta;X)}{\partial\theta}\right)\right)
$$

$$
= \frac{1}{\sqrt{n}}\frac{\partial\log L(\theta;X)}{\partial\theta} \longrightarrow N(0,\Sigma)
$$

where
\n
$$
n\text{V}\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial\log f(X_i;\theta)}{\partial\theta}\right) = \frac{1}{n}\text{V}\left(\sum_{i=1}^{n}\frac{\partial\log f(X_i;\theta)}{\partial\theta}\right) = \frac{1}{n}\text{V}\left(\frac{\partial\log L(\theta;X)}{\partial\theta}\right)
$$
\n
$$
= \frac{1}{n}I(\theta) \longrightarrow \Sigma.
$$

That is,

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} \longrightarrow N(0, \Sigma),
$$

where $X = (X_1, X_2, \dots, X_n)$.

Now, replacing θ by $\tilde{\theta}$, consider the asymptotic distribution of

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta}; X)}{\partial \theta},
$$

which is expanded around $\tilde{\theta} = \theta$ as follows:

$$
0=\frac{1}{\sqrt{n}}\frac{\partial \log L(\tilde{\theta};X)}{\partial \theta}\approx \frac{1}{\sqrt{n}}\frac{\partial \log L(\theta;X)}{\partial \theta}+\frac{1}{\sqrt{n}}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}(\tilde{\theta}-\theta).
$$

Therefore,

$$
-\frac{1}{\sqrt{n}}\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}(\tilde{\theta} - \theta) \approx \frac{1}{\sqrt{n}}\frac{\partial \log L(\theta; X)}{\partial \theta} \longrightarrow N(0, \Sigma).
$$

The left-hand side is rewritten as:

$$
-\frac{1}{\sqrt{n}}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}(\tilde{\theta}-\theta) = \sqrt{n}\left(-\frac{1}{n}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right)(\tilde{\theta}-\theta).
$$

Then,

$$
\sqrt{n}(\tilde{\theta} - \theta) \approx \left(-\frac{1}{n} \frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta}\right)^{-1} \left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta}\right)
$$

$$
\longrightarrow N(0, \Sigma^{-1} \Sigma \Sigma^{-1}) = N(0, \Sigma^{-1}).
$$

Using the law of large number, note that

$$
-\frac{1}{n}\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'} \longrightarrow \lim_{n \to \infty} \frac{1}{n} \left(-\mathrm{E}\Big(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\Big) \right)
$$

=
$$
\lim_{n \to \infty} \frac{1}{n} \left(\mathrm{V}\Big(\frac{\partial \log L(\theta; X)}{\partial \theta}\Big) \right) = \lim_{n \to \infty} \frac{1}{n} I(\theta) = \Sigma,
$$

and
$$
\left(\frac{1}{n}\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right)^{-1} \left(\frac{1}{\sqrt{n}}\frac{\partial \log L(\theta; X)}{\partial \theta}\right)
$$
 has the same asymptotic distribution as $\Sigma^{-1} \left(\frac{1}{\sqrt{n}}\frac{\partial \log L(\theta; X)}{\partial \theta}\right)$.

11. **Optimization** ():

MLE of θ results in the following maximization problem:

$$
\max_{\theta} \log L(\theta; x).
$$

We often have the case where the solution of θ is not derived in closed form.

 \implies Optimization procedure

$$
0 = \frac{\partial \log L(\theta; x)}{\partial \theta} = \frac{\partial \log L(\theta^*; x)}{\partial \theta} + \frac{\partial^2 \log L(\theta^*; x)}{\partial \theta \partial \theta'} (\theta - \theta^*).
$$

Solving the above equation with respect to θ , we obtain the following:

$$
\theta = \theta^* - \left(\frac{\partial^2 \log L(\theta^*; x)}{\partial \theta \partial \theta'}\right)^{-1} \frac{\partial \log L(\theta^*; x)}{\partial \theta}.
$$

Replace the variables as follows:

$$
\theta \longrightarrow \theta^{(i+1)}, \qquad \theta^* \longrightarrow \theta^{(i)}.
$$

Then, we have:

$$
\theta^{(i+1)} = \theta^{(i)} - \left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}\right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta}.
$$

 \Rightarrow Newton-Raphson method (

$$
\left(\begin{array}{c} 1 \\ -1 \end{array} \right)
$$

Replacing $\frac{\partial^2 \log L(\theta^{(i)}; x)}{\log x}$ ∂θ∂θ⁰ by $E\left(\right)$ $\partial^2 \log L(\theta^{(i)}; x)$ ∂θ∂θ⁰ ! , we obtain the following op-

timization algorithm:

$$
\theta^{(i+1)} = \theta^{(i)} - \left(\mathbb{E} \left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'} \right) \right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta}
$$

$$
= \theta^{(i)} + \left(I(\theta^{(i)}) \right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta}
$$

 \Rightarrow Method of Scoring (\Rightarrow)