8.3 Serially Correlated Errors

Consider the case where the error term is serially correlated.

8.3.1 Augmented Dickey-Fuller (ADF) Test

Consider the following AR(p) model:

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t, \qquad \epsilon_t \sim iid(0, \sigma^2),$$

which is rewritten as: $\phi(L)y_t = \epsilon_t$.

When the above model has a unit root, we have $\phi(1) = 0$, i.e., $\phi_1 + \phi_2 + \cdots + \phi_p = 1$.

The above AR(p) model is written as:

$$y_t = \rho y_{t-1} + \delta_1 \Delta y_{t-1} + \delta_2 \Delta y_{t-2} + \dots + \delta_{p-1} \Delta y_{t-p+1} + \epsilon_t,$$

where
$$\rho = \phi_1 + \phi_2 + \cdots + \phi_p$$
 and $\delta_i = -(\phi_{i+1} + \phi_{i+2} + \cdots + \phi_p)$.

The null and alternative hypotheses are:

$$H_0: \rho = 1$$
 (Unit root),

$$H_1: \rho < 1$$
 (Stationary).

Use the t test, where we have the same asymptotic distributions.

We can utilize the same tables as before.

Choose *p* by AIC or SBIC.

Use
$$N(0, 1)$$
 to test H_0 : $\delta_j = 0$ against H_1 : $\delta_j \neq 0$ for $j = 1, 2, \dots, p - 1$.

Reference

Kurozumi (2008) "Economic Time Series Analysis and Unit Root Tests: Development and Perspective," *Japan Statistical Society*, Vol.38, Series J, No.1, pp.39 – 57.

Download the above paper from:

http://ci.nii.ac.jp/vol_issue/nels/AA11989749/ISS0000426576_ja.html

Example of ADF Test

. gen time=_n

. tsset time

time variable: time, 1 to 516 delta: 1 unit

. gen sexpend=expend-l12.expend
(12 missing values generated)

. corrgram sexpend

LAG	AC	PAC	Q	Prob>Q	-1 0 1 [Autocorrelation]	-1 0 1 [Partial Autocor]
1	0.7177	0.7184	261.14	0.0000		
2	0.7036	0.3895	512.6	0.0000		
3	0.7031	0.2817	764.23	0.0000		
4	0.6366	0.0456	970.94	0.0000		İ
5	0.6413	0.1116	1181.1	0.0000		
6	0.6267	0.0815	1382.2	0.0000		
7	0.6208	0.0972	1580	0.0000		İ
8	0.6384	0.1286	1789.5	0.0000		-
9	0.5926	-0.0205	1970.5	0.0000		
10	0.5847	-0.0014	2146.9	0.0000		
11	0.5658	-0.0185	2312.6	0.0000		İ
12	0.4529	-0.2570	2418.9	0.0000		
13	0.5601	0.2318	2581.8	0.0000		-
14	0.5393	0.1095	2733.2	0.0000		İ
15	0.5277	0.0850	2878.4	0.0000		1

. varsoc d.sexpend, exo(1.sexpend) maxlag(25)

Selection-order criteria Sample: 39 - 516 Number of obs = 478							= 478	
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	-4917.7 -4878.69 -4858.95 -4858.46 -4855.44 -4855.84 -4851.61 -4847.51 -4847.51 -4847.43 -4818.46 -4813.38 -4810.57 -4804.6 -4804.6 -4797.33 -4793.42 -4793.85	78.013 39.481 .97673 6.0461 3.1904 4.5304 7.942 .20154 .00096 .16024 32.094 25.8341 3.321 1.2007 5.6184 3.7539 5.1557 3.0319 2.7e-05 14.542 6.2571* 1.5626 1.1533		0.000 0.000 0.323 0.014 0.074 0.033 0.653 0.653 0.975 0.689 0.000 0.018 0.068 0.273 0.018 0.053 0.053 0.053 0.053 0.053 0.053	5.1e+07 4.3e+07 4.0e+07 4.0e+07 4.0e+07 4.0e+07 4.0e+07 3.9e+07 3.9e+07 3.9e+07 3.5e+07 3.5e+07 3.5e+07 3.5e+07 3.5e+07 3.5e+07 3.5e+07 3.5e+07 3.4e+07 3.4e+07 3.3e+07 3.3e+07	20.5845 20.4255 20.3471 20.3492 20.3407 20.3383 20.3205 20.3243 20.3285 20.3285 20.3243 20.2694 20.2195 20.2119 20.2108 20.2108 20.2032 20.1996 20.1998 20.1998 20.195 20.1688 20.1688 20.1698* 20.1608 20.1625	20.5914 20.4358 20.3608 20.3664 20.3613 20.3623 20.3604 20.3514 20.3586 20.3662 20.3735 20.2675 20.2633 20.264 20.265 20.264 20.265 20.2647 20.2616 20.2628 20.2704 20.2476 20.2422* 20.24517	20.6019 20.4516 20.382 20.3928 20.3931 20.3993 20.4027 20.3999 20.4115 20.4244 20.4244 20.3427 20.3828 20.3416* 20.3427 20.3828 20.3653 20.3653 20.3653 20.3653 20.3653 20.3653 20.3653 20.3653 20.3694 20.3748 20.3788 20.3788 20.3788 20.3788

25 -479	2.78 .13518	1 0.713	3.4e+07	20.1664	20.259	20.402
Endogenous	: D.sexpend : L.sexpend _					
. dfuller sex	pend, lags(22)					
Augmented Dic	key-Fuller test	for unit	root	Number o	f obs =	481
	Test Statistic	1% Crit	ical	oolated Dicke 5% Critica Value	l 10%	Critical
Z(t)	-1.627	-3	3.442	-2.87	 1	-2.570
MacKinnon app	roximate p-valu	e for Z(t)	= 0.4689			
. dfuller sex	pend, lags(12)					
Augmented Dic	key-Fuller test	for unit	root	Number o	f obs =	491
	Test Statistic	1% Crit Val	ical ue	oolated Dicke 5% Critica Value	ey-Fuller l 10%	Critical Value
Z(t)	-2.399	 -3	3.441	-2.870	9 9	-2.570
MacKinnon app	roximate p-valu	e for Z(t)	= 0.1420			

 \implies Unit root is detected.

8.4 Cointegration (共和分)

1. For a scalar y_t , when $\Delta y_t = y_t - y_{t-1}$ is a white noise (i.e., iid), we write $\Delta y_t \sim I(1)$.

2. Definition of Cointegration:

Suppose that each series in a $g \times 1$ vector y_t is I(1), i.e., each series has unit root, and that a linear combination of each series (i.e, $a'y_t$ for a nonzero vector a) is I(0), i.e., stationary.

Then, we say that y_t has a cointegration.

a is called the cointegrating vector.

3. Example:

Suppose that $y_t = (y_{1,t}, y_{2,t})'$ is the following vector autoregressive process:

$$y_{1,t} = \phi_1 y_{2,t} + \epsilon_{1,t},$$

$$y_{2,t} = y_{2,t-1} + \epsilon_{2,t}.$$

Then,

$$\Delta y_{1,t} = \phi_1 \epsilon_{2,t} + \epsilon_{1,t} - \epsilon_{1,t-1},$$
 (MA(1) process),

$$\Delta y_{2,t} = \epsilon_{2,t},$$

where both $y_{1,t}$ and $y_{2,t}$ are I(1) processes.

The linear combination $y_{1,t} - \phi_1 y_{2,t}$ is I(0).

In this case, we say that $y_t = (y_{1,t}, y_{2,t})'$ is cointegrated with $a = (1, -\phi_1)$.

 $a = (1, -\phi_1)$ is called the cointegrating vector, which is not unique.

Therefore, the first element of a is set to be one.

8.5 Spurious Regression (見せかけ回帰)

1. Suppose that $y_t \sim I(1)$ and $x_t \sim I(1)$.

For the regression model $y_t = x_t \beta + u_t$, OLS does not work well if we do not have the β which satisfies $u_t \sim I(0)$.

- ⇒ Spurious regression (見せかけ回帰)
- 2. Suppose that $y_t \sim I(1)$, y_t is a $g \times 1$ vector and $y_t = \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}$. $y_{2,t}$ is a $k \times 1$ vector, where k = g 1.

Consider the following regression model:

$$y_{1,t} = \alpha + \gamma' y_{2,t} + u_t, \qquad t = 1, 2, \dots, T.$$

OLSE is given by:

$$\begin{pmatrix} \hat{\alpha} \\ \hat{\gamma} \end{pmatrix} = \begin{pmatrix} T & \sum y'_{2,t} \\ \sum y_{2,t} & \sum y_{2,t} y'_{2,t} \end{pmatrix}^{-1} \begin{pmatrix} \sum y_{1,t} \\ \sum y_{1,t} y_{2,t} \end{pmatrix}.$$

Next, consider testing the null hypothesis H_0 : $R\gamma = r$, where R is a $m \times k$ matrix $(m \le k)$ and r is a $m \times 1$ vector.

The F statistic, denoted by F_T , is given by:

$$F_T = \frac{1}{m} (R\hat{\gamma} - r)' \left(s_T^2 \left(0 - R \right) \left(\frac{T}{\sum y_{2,t}} \frac{\sum y_{2,t}'}{\sum y_{2,t} y_{2,t}'} \right)^{-1} \begin{pmatrix} 0 \\ R' \end{pmatrix} \right)^{-1} (R\hat{\gamma} - r),$$

where

$$s_T^2 = \frac{1}{T - g} \sum_{t=1}^{T} (y_{1,t} - \hat{\alpha} - \hat{\gamma}' y_{2,t})^2.$$

When we have the γ such that $y_{1,t} - \gamma y_{2,t}$ is stationary, OLSE of γ , i.e., $\hat{\gamma}$, is not statistically equal to zero.

When the sample size T is large enough, H_0 is rejected by the F test.

3. Phillips, P.C.B. (1986) "Understanding Spurious Regressions in Econometrics," *Journal of Econometrics*, Vol.33, pp.95 – 131.

Consider a $g \times 1$ vector v_t whose first difference is described by:

$$\Delta y_t = \Psi(L)\epsilon_t = \sum_{s=0}^{\infty} \Psi_s \epsilon_{t-s},$$

for ϵ_t an i.i.d. $g \times 1$ vector with mean zero , variance $E(\epsilon_t \epsilon_t') = PP'$, and finite fourth moments and where $\{s\Psi_s\}_{s=0}^{\infty}$ is absolutely summable.

Let k = g - 1 and $\Lambda = \Psi(1)P$.

Partition
$$y_t$$
 as $y_t = \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}$ and $\Lambda\Lambda'$ as $\Lambda\Lambda' = \begin{pmatrix} \Sigma_{11} & \Sigma'_{21} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$, where $y_{1,t}$ and Σ_{11} are scalars, $y_{2,t}$ and Σ_{21} are $k \times 1$ vectors, and Σ_{22} is a $k \times k$ matrix.

Suppose that $\Lambda\Lambda'$ is nonsingular, and define $\sigma_1^{*2} = \Sigma_{11} - \Sigma_{21}' \Sigma_{22}^{-1} \Sigma_{21}$.

Let L_{22} denote the Cholesky factor of Σ_{22}^{-1} , i.e., L_{22} is the lower triangular matrix satisfying $\Sigma_{22}^{-1} = L_{22}L'_{22}$.

Then, (a) - (c) hold.

(a) OLSEs of α and γ in the regression model $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$, denoted by $\hat{\alpha}_T$ and $\hat{\gamma}_T$,

are characterized by:
$$\begin{pmatrix} T^{-1/2}\hat{\alpha}_T \\ \hat{\gamma}_T - \Sigma_{22}^{-1}\Sigma_{21} \end{pmatrix} \longrightarrow \begin{pmatrix} \sigma_1^*h_1 \\ \sigma_1^*L_{22}h_2 \end{pmatrix},$$
 where
$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} 1 & \int_0^1 W_2^*(r)'dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_2^*(r)'dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_2^*(r)'dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_2^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_2^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_1^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_1^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_1^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_1^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_1^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_1^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_1^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_1^1 W_1^*(r)dr & \int_1^1 W_1^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ V_1^*(r)dr & V_1^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} V_1^*(r)dr & V_1^*(r)dr \\ V_1^*(r)dr & V_1^*(r)dr \end{pmatrix}^{-1} \begin{pmatrix} V_$$

 $W_1^*(r)$ and $W_2^*(r)$ denote scalar and g-dimensional standard Brownian motions, and $W_1^*(r)$ is independent of $W_2^*(r)$.

(b) The sum of squared residuals, denoted by $RSS_T = \sum_{t=1}^T \hat{u}_t^2$, satisfies

$$T^{-2} RSS_T \longrightarrow \sigma_1^{*2} H,$$
 where
$$H = \int_0^1 (W_1^*(r))^2 dr - \left(\left(\frac{\int_0^1 W_1^*(r) dr}{\int_0^1 W_2^*(r) W_1^*(r) dr} \right)' \binom{h_1}{h_2} \right)^{-1}.$$

(c) The F_T test satisfies:

$$T^{-1}F_{T} \longrightarrow \frac{1}{m} (\sigma_{1}^{*}R^{*}h_{2} - r^{*})'$$

$$\times \left(\sigma_{1}^{*2}H(0 R^{*}) \left(\begin{array}{cc} 1 & \int_{0}^{1} W_{2}^{*}(r)' dr \\ \int_{0}^{1} W_{2}^{*}(r) dr & \int_{0}^{1} W_{2}^{*}(r)W_{2}^{*}(r)' dr \end{array}\right)^{-1} (0 R^{*})'\right)^{-1}$$

$$\times (\sigma_1^* R^* h_2 - r^*),$$

where $R^* = RL_{22}$ and $r^* = r - R\Sigma_{22}^{-1}\Sigma_{21}$.

Summary: Spurious regression (見せかけの回帰)

Consider the regression model: $y_{1,t} = \alpha + y_{2,t}\gamma + u_t$ for $t = 1, 2, \dots, T$

and
$$y_t \sim I(1)$$
 for $y_t = (y_{1,t}, y_{2,t})'$.

- (a) indicates that OLSE $\hat{\gamma}_T$ is not consistent.
- (b) indicates that $s_T^2 = \frac{1}{T g} \sum_{t=1}^{T} \hat{u}_t^2$ diverges.
- (c) indicates that F_T diverges.
- \implies It seems that the coefficients are statistically significant, based on the conventional t statistics.