8.3 Serially Correlated Errors

Consider the case where the error term is serially correlated.
8.3.1 Augmented Dickey-Fuller (ADF) Test
Consider the following AR(p) model:

Vi = Gt + Gyt Py, + 6, & ~ iid(0, o),

which is rewritten as: o(L)y; = €.

When the above model has a unit root, we have ¢(1) = 0, 1.e., 1 + p, + - - -

The above AR(p) model is written as:
Vi = PYi-1 + 0181 + AV 2 + -+ +0p 1AV pr1 + €

wherep=¢1 +¢dr+---+d,and 6, = —(dpju1 + Pjuo + - + &)).
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The null and alternative hypotheses are:
Hy : p =1 (Unit root),
H, : p < 1 (Stationary).
Use the 1 test, where we have the same asymptotic distributions.
We can utilize the same tables as before.
Choose p by AIC or SBIC.
Use N(0,1) to test Hy : 6; = 0 against H, : 6; # 0for j=1,2,---,p—1.
Reference
Kurozumi (2008) “Economic Time Series Analysis and Unit Root Tests: Develop-
ment and Perspective,” Japan Statistical Society, Vol.38, Series J, No.1, pp.39 — 57.

Download the above paper from:

http://ci.nii.ac.jp/vol_issue/nels/AA11989749/1SS0000426576_ja.html
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Example of ADF Test

. gen time=_n
. tsset time i :
time variable: time, 1 to 516
delta: 1 unit

. gen sexpend=expend-112.expend
(12 missing values generated)

. corrgram sexpend

-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
1 0.7177 0.7184 261.14 o6 - |----- | -==--
2 0.7036  0.3895 512.6 0.0000 | ----- -—-
3 0.7031 0.2817 764.23 0.6000 @ |----- --
4 0.6366 0.0456 970.94 0.0000 @ |-----
5 0.6413 0.1116 1181.1 ©0.60000 = |-----
6 0.6267 0.0815 1382.2 0.0000 = |-----
7 0.6208 0.0972 1580 0.0000 -———-
8 0.6384 0.1286 1789.5 0.0000 = |----- -
9 0.5926 -0.0205 1970.5 0.0000 -——-
10 0.5847 -0.0014 2146.9 0.0000 ———-
11 0.5658 -0.0185 2312.6 0.0000 -———-
12 0.4529 -0.2570 2418.9 0.0000 -—- --
13 0.5601 0.2318 2581.8 0.0000 -———- -
14 0.5393 0.1095 2733.2 0.0000 -——-
15 0.5277 0.0850 2878.4 0.0000 ———-




. varsoc d.sexpend, exo(l.sexpend) maxlag(25)

Selection-order criteria

Sample: 39 - 516

-4792.85

OO
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Number of obs
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20
2
20
2
20

20.1598%*

20
20

.5845
.4255
.3471
.3492
. 3407
.3383
0.333
.3205
.3243
.3285
.3323
.2694
.2195
.2119
.2091
.2108
.2032
.1996
0.193
.1908
0.195
.1688

.1608
.1625

20.6019
20.4516
20.382
20.3928
20.3931
20.3993
20.4027
20.399
20.4115
20.4244
20.437
20.3828
20.3416*
20.3427
20.3487
20.3591
20.3603
20.3653
20.3674
20.374
20.3869
20.3694
20.3692
20.3788
20.3893




| 25 | -4792.78 .13518 1 0.713 3.4e+07 20.1664 20.259 20.402

Endogenous: D.sexpend
Exogenous: L.sexpend _cons

. dfuller sexpend, lags(22)

Augmented Dickey-Fuller test for unit root Number of obs = 481
—————————— Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z() -1.627 -3.442 -2.871 -2.570

MacKinnon approximate p-value for Z(t) = 0.4689

. dfuller sexpend, lags(12)

Augmented Dickey-Fuller test for unit root Number of obs = 491
—————————— Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -2.399 -3.441 -2.870 -2.570

MacKinnon approximate p-value for Z(t) = 0.1420

— Unit root is detected.
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8.4 Cointegration (L1 [ 1)

1. For a scalar y,, when Ay, = y, — y;—1 is a white noise (i.e., iid), we write Ay, ~ I(1).

2. Definition of Cointegration:

Suppose that each series in a g X 1 vector y, is I(1), i.e., each series has unit root, and that a

linear combination of each series (i.e, a’y; for a nonzero vector a) is 1(0), i.e., stationary.
Then, we say that y; has a cointegration.

a is called the cointegrating vector.

3. Example:

Suppose that y, = (y1,4, y2,)" is the following vector autoregressive process:

Vi = P1y2s + €1,

Y2u = Yo-1 T €.

Then,

Ay = dr1e; + €1, — €121, (MA(1) process),
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8.5

Ayr; = &y,

where both y; ; and y,, are I(1) processes.

The linear combination y;; — ¢1y2, is 1(0).

In this case, we say thaty, = (y1,, y2,)’ is cointegrated with a = (1, —¢;).
a = (1, —¢y) is called the cointegrating vector, which is not unique.

Therefore, the first element of a is set to be one.

Spurious Regression ([J [J [0 [0 [ [0)

. Suppose that y, ~ I(1) and x, ~ I(1).

For the regression model y; = x,8 + u;, OLS does not work well if we do not have the S which

satisfies u; ~ 1(0).

— Spurious regression (U 0 OO0 0)

Y1t
Suppose that y, ~ I(1), y; is a g X 1 vector and y, = ( )

Y2t
Ya2ris a k X 1 vector, where k = g — 1.
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Consider the following regression model:

Yig=a+ Yy +u, r=1,2,---,T.

(e o) (o)
4 Xy ZYaa,) A\ XYy

Next, consider testing the null hypothesis Hy : Ry = r, where R is a m X k matrix (m < k) and

OLSE is given by:

risam X 1 vector.

The F statistic, denoted by Fr, is given by:

1 T 25, 1o
FT=—(R&—r>'[s%<o R)( > ) ( )] Ry = 1),
m Xyae Xyas,) \R

Whel’e
s] T E (yl ! aA ) ) l)
g =1 ’ ’ .

When we have the y such that y;, — yy,, is stationary, OLSE of v, i.e., ¥, is not statistically

equal to zero.

When the sample size 7 is large enough, Hj is rejected by the F test.

198



3. Phillips, P.C.B. (1986) “Understanding Spurious Regressions in Econometrics,” Journal of
Econometrics, Vol.33, pp.95 — 131.

Consider a g X 1 vector y, whose first difference is described by:

Ay =¥(D)e = ) Wier,
s=0

for € an i.i.d. g X 1 vector with mean zero , variance E(¢€/) = PP’, and finite fourth moments

and where {sW}?, is absolutely summable.
Letk=g—-1and A = ¥Y(1)P.

n X,

Vi
Partition y; as y; = and AA" as AN’ = ( ), where y;, and X;; are scalars, y,,

Yo i 2 Xy
and X, are k X 1 vectors, and X,, is a k X k matrix.

Suppose that AA’ is nonsingular,and define a-”{z =2 - 2’2122 2.
Let Ly, denote the Cholesky factor of 252', i.e., Ly, is the lower triangular matrix satisfying
35 = Lynl,,.

Then, (a) — (c) hold.
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(a) OLSEs of « and vy in the regression model y;; = @ + ¥’y + u;, denoted by &r and ¥,

( Tﬁl/sz ) ( UTh] )
H 9’
1 — % o Lynh,
hl) ( 1 INAGLY )1 ( I wi@dr )

ml \fwiodr [ wiewieydr) \ [ wiewiedr

are characterized by:

where (

Wi(r) and W](r) denote scalar and g-dimensional standard Brownian motions, and

Wi (r) is independent of W3 (r).

(b) The sum of squared residuals, denoted by RSSy = 3", 22, satisfies

1t
-2 *2
T™°RSS;y — o °H,

) wirdr ) (h1 ))1

h H= [ (W) —((
where b wierar I wiwidr) \n

(c) The Fr test satisfies:

1
T'Fr — —(@ Ry =17

| R _ -1
1 fOWZ(r)dr )1 . R*),]

x|o**H (0 R*)(
( ! fwidr [ Wi (OWrydr
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X(o{R hy — 1),

where R* = RLy, and r* = r — RZ) %,;.

Summary: Spurious regression (O 0 OO0 O0O)

Consider the regression model: y;, = @ + y2, ¥y + u, fort =1,2,---,T

and y, ~ I(1) for y, = (y1.1. y2.)"-

(a) indicates that OLSE #7 is not consistent.
1 &
(b) indicates that s2T = T_—g Z ﬁtz diverges.
=1

(c) indicates that F diverges.

— It seems that the coeflicients are statistically significant, based on the conventional ¢ statistics.
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