4. Resolution for Spurious Regression:

Suppose that $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ is a spurious regression.

(1) Estimate $y_{1,t} = \alpha + \gamma' y_{2,t} + \phi y_{1,t-1} + \delta y_{2,t-1} + u_t$.

Then, $\hat{\gamma}_T$ is \sqrt{T} -consistent, and the *t* test statistic goes to the standard normal distribution under H_0 : $\gamma = 0$.

(2) Estimate $\Delta y_{1,t} = \alpha + \gamma' \Delta y_{2,t} + u_t$. Then, $\hat{\alpha}_T$ and $\hat{\beta}_T$ are \sqrt{T} -consistent, and the *t* test and *F* test make sense.

(3) Estimate $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ by the Cochrane-Orcutt method, assuming that u_t is the first-order serially correlated error.

Usually, choose (2).

However, there are two exceptions.

(i) The true value of ϕ is not one, i.e., less than one.

(ii) $y_{1,t}$ and $y_{2,t}$ are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

5. Cointegrating Vector:

Suppose that each element of y_t is I(1) and that $a'y_t$ is I(0).

a is called a **cointegrating vector** (共和分ベクトル), which is not unique.

Set $z_t = a'y_t$, where z_t is scalar, and a and y_t are $g \times 1$ vectors.

For $z_t \sim I(0)$ (i.e., stationary),

$$T^{-1} \sum_{t=1}^{T} z_t^2 = T^{-1} \sum_{t=1}^{T} (a'y_t)^2 \longrightarrow E(z_t^2)$$

For $z_t \sim I(1)$ (i.e., nonstationary, i.e., *a* is not a cointegrating vector),

$$T^{-2}\sum_{t=1}^{T} (a'y_t)^2 \longrightarrow \lambda^2 \int_0^1 (W(r))^2 \,\mathrm{d}r,$$

where W(r) denotes a standard Brownian motion and λ^2 indicates variance of $(1 - L)z_t$.

If *a* is not a cointegrating vector, $T^{-1} \sum_{t=1}^{T} z_t^2$ diverges.

 \implies We can obtain a consistent estimate of a cointegrating vector by minimizing $\sum_{t=1}^{T} z_t^2$ with respect to *a*, where a normalization condition on *a* has to be imposed.

The estimator of the *a* including the normalization condition is super-consistent (*T*-consistent).

Stock, J.H. (1987) "Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors," *Econometrica*, Vol.55, pp.1035 – 1056.

Proposition:

Let $y_{1,t}$ be a scalar, $y_{2,t}$ be a $k \times 1$ vector, and $(y_{1,t}, y'_{2,t})'$ be a $g \times 1$ vector, where g = k + 1. Consider the following model:

$$y_{1,t} = \alpha + \gamma' y_{2,t} + z_t^*,$$

 $\Delta y_{2,t} = u_{2,t},$
 $\begin{pmatrix} z_t^* \\ u_{2,t} \end{pmatrix} = \Psi^*(L)\epsilon_t,$

 ϵ_t is a $g \times 1$ i.i.d. vector with $E(\epsilon_t) = 0$ and $E(\epsilon_t \epsilon'_t) = PP'$.

OLSE is given by:
$$\begin{pmatrix} \hat{\alpha} \\ \hat{\gamma} \end{pmatrix} = \begin{pmatrix} T & \sum y'_{2,t} \\ \sum y_{2,t} & \sum y_{2,t}y'_{2,t} \end{pmatrix}^{-1} \begin{pmatrix} \sum y_{1,t} \\ \sum y_{1,t}y_{2,t} \end{pmatrix}$$

Define λ_1^* , which is a $g \times 1$ vector, and Λ_2^* , which is a $k \times g$ matrix, as follows:

$$\Psi^*(1) \ P = \begin{pmatrix} \lambda_1^{*\prime} \\ \Lambda_2^{*} \end{pmatrix}.$$

1 0

Then, we have the following results:

where
$$\begin{pmatrix} T^{1/2}(\hat{\alpha} - \alpha) \\ T(\hat{\gamma} - \gamma) \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & \left(\Lambda_2^* \int W(r) dr \right)' \\ \Lambda_2^* \int W(r) dr & \Lambda_2^* \left(\int (W(r)) (W(r))' dr \right) \Lambda_2^{*'} \end{pmatrix}^{-1} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix},$$

where $\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \\ \Lambda_2^* \left(\int W(r) (dW(r))' \right) \lambda_1^* + \sum_{\tau=0}^{\infty} E(u_{2,\tau} z_{t+\tau}^*) \end{pmatrix}.$

W(r) denotes a g-dimensional standard Brownian motion.

1) OLSE of the cointegrating vector is consistent even though u_t is serially correlated.

2) The consistency of OLSE implies that $T^{-1} \sum \hat{u}_t^2 \longrightarrow \sigma^2$.

3) Because $T^{-1} \sum (y_{1,t} - \overline{y}_1)^2$ goes to infinity, a coefficient of determination, R^2 , goes to one.

8.6 Testing Cointegration

8.6.1 Engle-Granger Test

 $y_t \sim I(1)$

 $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$

• $u_t \sim I(0) \implies$ Cointegration

• $u_t \sim I(1) \implies$ Spurious Regression

Estimate $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ by OLS, and obtain \hat{u}_t .

Estimate
$$\hat{u}_t = \rho \hat{u}_{t-1} + \delta_1 \Delta \hat{u}_{t-1} + \delta_2 \Delta \hat{u}_{t-2} + \dots + \delta_{p-1} \Delta \hat{u}_{t-p+1} + e_t$$
 by OLS.

ADF Test:

- H_0 : $\rho = 1$ (Sprious Regression)
- H_1 : $\rho < 1$ (Cointegration)

\implies Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Hansen (1992).

# of Refressors,	(a) Regressors have no drift				(b) Some regressors have drift			
excluding constant	1%	2.5%	5%	10%	1%	2.5%	5%	10%
1	-3.96	-3.64	-3.37	-3.07	-3.96	-3.67	-3.41	-3.13
2	-4.31	-4.02	-3.77	-3.45	-4.36	-4.07	-3.80	-3.52
3	-4.73	-4.37	-4.11	-3.83	-4.65	-4.39	-4.16	-3.84
4	-5.07	-4.71	-4.45	-4.16	-5.04	-4.77	-4.49	-4.20
5	-5.28	-4.98	-4.71	-4.43	-5.36	-5.02	-4.74	-4.46

Asymmptotic Distribution of Residual-Based ADF Test for Cointegration

J.D. Hamilton (1994), Time Series Analysis, p.766.

8.6.2 Error Correction Representation

VAR(p) model:

$$y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t,$$

where y_t , α and ϵ_t indicate $g \times 1$ vectors for $t = 1, 2, \dots, T$, and ϕ_s is a $g \times g$ matrix for $s = 1, 2, \dots, p$.

Rewrite:

$$y_t = \alpha + \rho y_{t-1} + \delta_1 \Delta y_{t-1} + \delta_2 \Delta y_{t-2} + \dots + \delta_{p-1} \Delta y_{t-p+1} + \epsilon_t,$$

where

$$\rho = \phi_1 + \phi_2 + \dots + \phi_p,$$

$$\delta_s = -(\phi_{s+1} + \delta_{s+2} + \dots + \phi_p), \quad \text{for } s = 1, 2, \dots, p - 1.$$

Again, rewrite:

$$\Delta y_t = \alpha + \delta_0 y_{t-1} + \delta_1 \Delta y_{t-1} + \delta_2 \Delta y_{t-2} + \dots + \delta_{p-1} \Delta y_{t-p+1} + \epsilon_t,$$

where

$$\delta_0 = \rho - I_g = -\phi(1),$$

for $\phi(L) = I_g - \delta_1 L - \delta_2 L^2 - \dots - \delta_p L^p$.

If y_t has h cointegrating relations, we have the following error correction representation:

$$\Delta y_t = \alpha - BA' y_{t-1} + \delta_1 \Delta y_{t-1} + \delta_2 \Delta y_{t-2} + \dots + \delta_{p-1} \Delta y_{t-p+1} + \epsilon_t,$$

where $A'y_{t-1}$ is a stationary $h \times 1$ vector (i.e., h I(0) processes), and B and A are $g \times h$ matrices.

Note that $\phi(1) = BA'$ for $\phi(L) = I_g - \delta_1 L - \delta_2 L^2 - \dots - \delta_p L^p$.

Each row of A' denotes the cointegrating vector, i.e., A' consists of h cointegrating vectors.

Suppose that $\epsilon_t \sim N(0, \Sigma)$. The log-likelihood function is:

$$\log l(\alpha, \delta_{1}, \dots, \delta_{p-1}, B|A) = -\frac{Tg}{2} \log(2\pi) - \frac{T}{2} \log|\Sigma| \\ -\frac{1}{2} \sum_{t=1}^{T} (\Delta y_{t} - \alpha + BA' y_{t-1} - \delta_{1} \Delta y_{t-1} - \dots - \delta_{p-1} \Delta y_{t-p+1})' \Sigma^{-1} \\ \times (\Delta y_{t} - \alpha + BA' y_{t-1} - \delta_{1} \Delta y_{t-1} - \dots - \delta_{p-1} \Delta y_{t-p+1})$$

Given A and h, maximize log l with respect to α , δ_1 , \cdots , δ_{p-1} , B.

Then, given *h*, how do we estimate $A? \implies$ Johansen (1988, 1991)

(*) Canonical Correlatoion (正準相関)

$$x' = (x_1, x_2, \dots, x_n)$$
 and $y' = (y_1, y_2, \dots, y_m)$, where $n \le m$.
 $u = a'x = a_1x_1 + a_2x_2 + \dots + a_nx_n$,
 $v = b'y = b_1y_1 + b_2y_2 + \dots + b_my_m$,

where V(u) = V(v) = 1 and E(x) = E(y) = 0 for simplicity.

Define:

$$V(x) = \Sigma_{xx}, \qquad E(xy') = \Sigma_{xy}, \qquad V(y) = \Sigma_{yy}, \qquad E(yx') = \Sigma_{yx} = \Sigma'_{xy}.$$

The correlation coefficient between u and v, denoted by ρ , is:

$$\rho = \frac{\operatorname{Cov}(u, v)}{\sqrt{\operatorname{V}(u)}\sqrt{\operatorname{V}(v)}} = a' \Sigma_{xy} b,$$

where $V(u) = a' \Sigma_{xx} a = 1$ and $V(v) = b' \Sigma_{yy} b = 1$.

Maximize $\rho = a' \Sigma_{xy} b$ subject to $a' \Sigma_{xx} a = 1$ and $b' \Sigma_{yy} b = 1$.

The Lagrangian is:

$$L = a' \Sigma_{xy} b - \frac{1}{2} \lambda (a' \Sigma_{xx} a - 1) - \frac{1}{2} \mu (b' \Sigma_{yy} b - 1).$$

Take a derivative with respect to *a* and *b*.

$$\frac{\partial L}{\partial a} = \Sigma_{xy}b - \lambda \Sigma_{xx}a = 0, \qquad \frac{\partial L}{\partial b} = \Sigma'_{xy}a - \mu \Sigma_{yy}b = 0.$$

Using $a' \Sigma_{xx} a = 1$ and $b' \Sigma_{yy} b = 1$, we obtain:

$$\lambda = \mu = a' \Sigma_{xy} b.$$

From the first equation, we obtain:

$$a = \frac{1}{\lambda} \Sigma_{xx}^{-1} \Sigma_{xy} b,$$

which is substituted into the second equation as follows:

$$\frac{1}{\lambda} \Sigma_{xy}' \Sigma_{xx}^{-1} \Sigma_{xy} b - \lambda \Sigma_{yy} b = 0,$$

i.e.,

$$(\Sigma_{yy}^{-1}\Sigma_{xy}'\Sigma_{xx}^{-1}\Sigma_{xy} - \lambda^2 I_m)b = 0,$$

i.e.,

$$|\Sigma_{yy}^{-1}\Sigma_{xy}'\Sigma_{xx}^{-1}\Sigma_{xy} - \lambda^2 I_m| = 0.$$

The solution of λ^2 is given by the maximum eigen value of $\sum_{yy}^{-1} \Sigma'_{xy} \Sigma_{xx}^{-1} \Sigma_{xy}$, and *b* is the corresponding eigen vector.

Back to the Cointegration:

Estimate the following two regressions:

$$\Delta y_t = b_{1,0} + b_{1,1} \Delta y_{t-1} + b_{1,2} \Delta y_{t-2} + \dots + b_{1,p-1} \Delta y_{t-p+1} + u_{1,t}$$

$$y_{t-1} = b_{2,0} + b_{2,1} \Delta y_{t-1} + b_{2,2} \Delta y_{t-2} + \dots + b_{2,p-1} \Delta y_{t-p+1} + u_{2,t}$$

Obtain $\hat{u}_{i,t}$ for i = 1, 2 and $t = 1, 2, \dots, T$, and compute as follow:

$$\hat{\Sigma}_{11} = \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{1,t} \hat{u}'_{1,t}, \qquad \hat{\Sigma}_{22} = \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{2,t} \hat{u}'_{2,t},$$
$$\hat{\Sigma}_{12} = \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{1,t} \hat{u}'_{2,t}, \qquad \hat{\Sigma}_{21} = \hat{\Sigma}'_{12}.$$

From $\hat{\Sigma}_{22}^{-1}\hat{\Sigma}_{21}\hat{\Sigma}_{11}^{-1}\hat{\Sigma}_{12}$, compute *h* biggest eigenvalues, denoted by $\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_h$, and the corresponding eigen vectors, denoted by $\hat{a}_1, \hat{a}_2, \dots, \hat{a}_h$, where $\hat{\lambda}_1 > \hat{\lambda}_2 > \dots > \hat{\lambda}_h$,

The estimate of A, \hat{A} , is given by $\hat{A} = (\hat{a}_1, \hat{a}_2, \dots, \hat{a}_h)$.

How do we obtain *h*?

8.7 Testing the Number of Cointegrating Vectors

Trace Test (トレース検定): $H_0: \lambda_{h+1} = 0$ and $H_1: \lambda_h > 0$.

$$2(\log l_1 - \log l_0) = -T \sum_{i=h+1}^g \log(1 - \hat{\lambda}_i) \longrightarrow \operatorname{tr}(Q),$$

where

$$Q = \left(\int_0^1 W(r) dW(r)'\right)' \left(\int_0^1 W(r) W(r)' dr\right)^{-1} \left(\int_0^1 W(r) dW(r)'\right).$$

Trace Test for # of Cointegrating Relations

# of Random	(a) Regressors have no drift				(b) Some regressors have drift			
Walks $(g - h)$	1%	2.5%	5%	10%	1%	2.5%	5%	10%
1	11.576	9.658	8.083	6.691	6.936	5.332	3.962	2.816
2	21.962	19.611	17.844	15.583	19.310	17.299	15.197	13.338
3	37.291	34.062	31.256	28.436	35.397	32.313	29.509	26.791
4	55.551	51.801	48.419	45.248	53.792	50.424	47.181	43.964
5	77.911	73.031	69.977	65.956	76.955	72.140	68.905	65.063

J.D. Hamilton (1994), Time Series Analysis, p.767.

Largest Eigenvalue Test (最大固有値検定):

 H_0 : $\lambda_{h+1} = 0$ and H_1 : $\lambda_h > 0$.

 $2(\log l_1 - \log l_0) = -T \log(1 - \hat{\lambda}_{h+1}) \longrightarrow \text{maxmum eigen value of } Q,$

# of Random	(a) Regressors have no drift				(b) Some regressors have drift			
Walks $(g - h)$	1%	2.5%	5%	10%	1%	2.5%	5%	10%
1	11.576	9.658	8.083	6.691	6.936	5.332	3.962	2.816
2	18.782	16.403	14.595	12.783	17.936	15.810	14.036	12.099
3	26.154	23.362	21.279	18.959	25.521	23.002	20.778	18.697
4	32.616	29.599	27.341	24.917	31.943	29.335	27.169	24.712
5	38.858	35.700	33.262	30.818	38.341	35.546	33.178	30.774

Maximum Eigenvalue Test for # of Cointegrating Relations

J.D. Hamilton (1994), Time Series Analysis, p.768.