
4. Resolution for Spurious Regression:

Suppose that y1,t = α + γ′y2,t + ut is a spurious regression.

(1) Estimate y1,t = α + γ′y2,t + φy1,t−1 + δy2,t−1 + ut.

Then, γ̂T is
√

T -consistent, and the t test statistic goes to the standard normal distribution under

H0 : γ = 0.

(2) Estimate ∆y1,t = α + γ′∆y2,t + ut. Then, α̂T and β̂T are
√

T -consistent, and the t test and F

test make sense.

(3) Estimate y1,t = α + γ′y2,t + ut by the Cochrane-Orcutt method, assuming that ut is the

first-order serially correlated error.

Usually, choose (2).

However, there are two exceptions.

(i) The true value of φ is not one, i.e., less than one.
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(ii) y1,t and y2,t are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

5. Cointegrating Vector:

Suppose that each element of yt is I(1) and that a′yt is I(0).

a is called a cointegrating vector (共和分ベクトル), which is not unique.

Set zt = a′yt, where zt is scalar, and a and yt are g × 1 vectors.

For zt ∼ I(0) (i.e., stationary)，

T−1
T∑

t=1

z2
t = T−1

T∑

t=1

(a′yt)2 −→ E(z2
t ).

For zt ∼ I(1) (i.e., nonstationary, i.e., a is not a cointegrating vector),

T−2
T∑

t=1

(a′yt)2 −→ λ2
∫ 1

0
(W(r))2 dr,

where W(r) denotes a standard Brownian motion and λ2 indicates variance of (1 − L)zt.
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If a is not a cointegrating vector, T−1 ∑T
t=1 z2

t diverges.

=⇒We can obtain a consistent estimate of a cointegrating vector by minimizing
∑T

t=1 z2
t with

respect to a, where a normalization condition on a has to be imposed.

The estimator of the a including the normalization condition is super-consistent (T -consistent).

● Stock, J.H. (1987) “Asymptotic Properties of Least Squares Estimators of Cointegrating

Vectors,” Econometrica, Vol.55, pp.1035 – 1056.

Proposition:

Let y1,t be a scalar, y2,t be a k × 1 vector, and (y1,t, y′2,t)
′ be a g × 1 vector, where g = k + 1.

Consider the following model:

y1,t = α + γ′y2,t + z∗t ,

∆y2,t = u2,t,

( z∗t

u2,t

)
= Ψ∗(L)εt,
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εt is a g × 1 i.i.d. vector with E(εt) = 0 and E(εtε
′
t ) = PP′.

OLSE is given by:
(
α̂

γ̂

)
=

( T
∑

y′2,t∑
y2,t

∑
y2,ty′2,t

)−1 ( ∑
y1,t

∑
y1,ty2,t

)
.

Define λ∗1, which is a g × 1 vector, and Λ∗2, which is a k × g matrix, as follows:

Ψ∗(1) P =

(
λ∗1
′

Λ∗2

)
.

Then, we have the following results:

( T 1/2(α̂ − α)

T (γ̂ − γ)

)
−→


1

(
Λ∗2

∫
W(r)dr

)′

Λ∗2

∫
W(r)dr Λ∗2

(∫
(W(r)) (W(r))′ dr

)
Λ∗2
′



−1 ( h1

h2

)
,

where
( h1

h2

)
=


λ∗1
′W(1)

Λ∗2

(∫
W(r) (dW(r))′

)
λ∗1 +

∞∑

τ=0

E(u2,tz∗t+τ)

.

W(r) denotes a g-dimensional standard Brownian motion.

1) OLSE of the cointegrating vector is consistent even though ut is serially correlated.

2) The consistency of OLSE implies that T−1 ∑
û2

t −→ σ2.

3) Because T−1 ∑
(y1,t − y1)2 goes to infinity, a coefficient of determination, R2, goes to one.
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8.6 Testing Cointegration
8.6.1 Engle-Granger Test

yt ∼ I(1)

y1,t = α + γ′y2,t + ut

• ut ∼ I(0) =⇒ Cointegration

• ut ∼ I(1) =⇒ Spurious Regression

Estimate y1,t = α + γ′y2,t + ut by OLS, and obtain ût.

Estimate ût = ρût−1 + δ1∆ût−1 + δ2∆ût−2 + · · · + δp−1∆ût−p+1 + et by OLS.

ADF Test:

• H0 : ρ = 1 (Sprious Regression)

• H1 : ρ < 1 (Cointegration)

=⇒ Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Hansen (1992).
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Asymmptotic Distribution of Residual-Based ADF Test for Cointegration

# of Refressors, (a) Regressors have no drift (b) Some regressors have drift

excluding constant 1% 2.5% 5% 10% 1% 2.5% 5% 10%

1 −3.96 −3.64 −3.37 −3.07 −3.96 −3.67 −3.41 −3.13

2 −4.31 −4.02 −3.77 −3.45 −4.36 −4.07 −3.80 −3.52

3 −4.73 −4.37 −4.11 −3.83 −4.65 −4.39 −4.16 −3.84

4 −5.07 −4.71 −4.45 −4.16 −5.04 −4.77 −4.49 −4.20

5 −5.28 −4.98 −4.71 −4.43 −5.36 −5.02 −4.74 −4.46
J.D. Hamilton (1994), Time Series Analysis, p.766.
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8.6.2 Error Correction Representation

VAR(p) model:

yt = α + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt,

where yt, α and εt indicate g× 1 vectors for t = 1, 2, · · · ,T , and φs is a g× g matrix for s = 1, 2, · · · , p.

Rewrite:

yt = α + ρyt−1 + δ1∆yt−1 + δ2∆yt−2 + · · · + +δp−1∆yt−p+1 + εt,

where

ρ = φ1 + φ2 + · · · + φp,

δs = −(φs+1 + δs+2 + · · · + φp), for s = 1, 2, · · · , p − 1.
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Again, rewrite:

∆yt = α + δ0yt−1 + δ1∆yt−1 + δ2∆yt−2 + · · · + +δp−1∆yt−p+1 + εt,

where

δ0 = ρ − Ig = −φ(1),

for φ(L) = Ig − δ1L − δ2L2 − · · · − δpLp.

If yt has h cointegrating relations, we have the following error correction representation:

∆yt = α − BA′yt−1 + δ1∆yt−1 + δ2∆yt−2 + · · · + +δp−1∆yt−p+1 + εt,

where A′yt−1 is a stationary h × 1 vector (i.e., h I(0) processes), and B and A are g × h matrices.

Note that φ(1) = BA′ for φ(L) = Ig − δ1L − δ2L2 − · · · − δpLp.

Each row of A′ denotes the cointegrating vector, i.e., A′ consists of h cointegrating vectors.
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Suppose that εt ∼ N(0,Σ). The log-likelihood function is:

log l(α, δ1, · · · , δp−1, B|A)

= −Tg
2

log(2π) − T
2

log |Σ|

−1
2

T∑

t=1

(∆yt − α + BA′yt−1 − δ1∆yt−1 − · · · − δp−1∆yt−p+1)′Σ−1

×(∆yt − α + BA′yt−1 − δ1∆yt−1 − · · · − δp−1∆yt−p+1)

Given A and h, maximize log l with respect to α, δ1, · · · , δp−1, B.

Then, given h, how do we estimate A? =⇒ Johansen (1988, 1991)
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(*) Canonical Correlatoion (正準相関)

x′ = (x1, x2, · · · , xn) and y′ = (y1, y2, · · · , ym), where n ≤ m.

u = a′x = a1x1 + a2x2 + · · · + anxn,

v = b′y = b1y1 + b2y2 + · · · + bmym,

where V(u) = V(v) = 1 and E(x) = E(y) = 0 for simplicity.

Define:

V(x) = Σxx, E(xy′) = Σxy, V(y) = Σyy, E(yx′) = Σyx = Σ′xy.

The correlation coefficient between u and v, denoted by ρ, is:

ρ =
Cov(u, v)√
V(u)

√
V(v)

= a′Σxyb,

where V(u) = a′Σxxa = 1 and V(v) = b′Σyyb = 1.

Maximize ρ = a′Σxyb subject to a′Σxxa = 1 and b′Σyyb = 1.

The Lagrangian is:

L = a′Σxyb − 1
2
λ(a′Σxxa − 1) − 1

2
µ(b′Σyyb − 1).
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Take a derivative with respect to a and b.

∂L
∂a

= Σxyb − λΣxxa = 0,
∂L
∂b

= Σ′xya − µΣyyb = 0.

Using a′Σxxa = 1 and b′Σyyb = 1, we obtain:

λ = µ = a′Σxyb.

From the first equation, we obtain:

a =
1
λ

Σ−1
xx Σxyb,

which is substituted into the second equation as follows:

1
λ

Σ′xyΣ
−1
xx Σxyb − λΣyyb = 0,

i.e.,

(Σ−1
yy Σ′xyΣ

−1
xx Σxy − λ2Im)b = 0,

i.e.,

|Σ−1
yy Σ′xyΣ

−1
xx Σxy − λ2Im| = 0.

The solution of λ2 is given by the maximum eigen value of Σ−1
yy Σ′xyΣ

−1
xx Σxy, and b is the corresponding

eigen vector.
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Back to the Cointegration:

Estimate the following two regressions:

∆yt = b1,0 + b1,1∆yt−1 + b1,2∆yt−2 + · · · + b1,p−1∆yt−p+1 + u1,t

yt−1 = b2,0 + b2,1∆yt−1 + b2,2∆yt−2 + · · · + b2,p−1∆yt−p+1 + u2,t

Obtain ûi,t for i = 1, 2 and t = 1, 2, · · · ,T , and compute as follow:

Σ̂11 =
1
T

T∑

t=1

û1,tû′1,t, Σ̂22 =
1
T

T∑

t=1

û2,tû′2,t,

Σ̂12 =
1
T

T∑

t=1

û1,tû′2,t, Σ̂21 = Σ̂′12.

From Σ̂−1
22 Σ̂21Σ̂−1

11 Σ̂12, compute h biggest eigenvalues, denoted by λ̂1, λ̂2, · · ·, λ̂h, and the corresponding

eigen vectors, denoted by â1, â2, · · ·, âh, where λ̂1 > λ̂2 > · · · > λ̂h,

The estimate of A, Â, is given by Â = (â1, â2, · · · , âh).

How do we obtain h?
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8.7 Testing the Number of Cointegrating Vectors

Trace Test (トレース検定): H0 : λh+1 = 0 and H1 : λh > 0.

2(log l1 − log l0) = −T
g∑

i=h+1

log(1 − λ̂i) −→ tr(Q),

where

Q =

(∫ 1

0
W(r)dW(r)′

)′ (∫ 1

0
W(r)W(r)′dr

)−1 (∫ 1

0
W(r)dW(r)′

)
.

Trace Test for # of Cointegrating Relations

# of Random (a) Regressors have no drift (b) Some regressors have drift

Walks (g − h) 1% 2.5% 5% 10% 1% 2.5% 5% 10%

1 11.576 9.658 8.083 6.691 6.936 5.332 3.962 2.816

2 21.962 19.611 17.844 15.583 19.310 17.299 15.197 13.338

3 37.291 34.062 31.256 28.436 35.397 32.313 29.509 26.791

4 55.551 51.801 48.419 45.248 53.792 50.424 47.181 43.964

5 77.911 73.031 69.977 65.956 76.955 72.140 68.905 65.063

J.D. Hamilton (1994), Time Series Analysis, p.767.
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Largest Eigenvalue Test (最大固有値検定):

H0 : λh+1 = 0 and H1 : λh > 0.

2(log l1 − log l0) = −T log(1 − λ̂h+1) −→ maxmum eigen value of Q,

Maximum Eigenvalue Test for # of Cointegrating Relations

# of Random (a) Regressors have no drift (b) Some regressors have drift

Walks (g − h) 1% 2.5% 5% 10% 1% 2.5% 5% 10%

1 11.576 9.658 8.083 6.691 6.936 5.332 3.962 2.816

2 18.782 16.403 14.595 12.783 17.936 15.810 14.036 12.099

3 26.154 23.362 21.279 18.959 25.521 23.002 20.778 18.697

4 32.616 29.599 27.341 24.917 31.943 29.335 27.169 24.712

5 38.858 35.700 33.262 30.818 38.341 35.546 33.178 30.774

J.D. Hamilton (1994), Time Series Analysis, p.768.
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