4. Resolution for Spurious Regression:
Suppose that y; ; = @ + y'y,, + u; is a spurious regression.

(1) Estimate y1; = a + ¥ ya; + ¢y1,-1 + 6y2,-1 + Uy,

Then, y7 is \NT -consistent, and the ¢ test statistic goes to the standard normal distribution under

H()Z ’}/:O

(2) Estimate Ay, ; = @ + y'Ays; + u;. Then, &r and BT are VT-consistent, and the 7 test and F

test make sense.

(3) Estimate y;;, = a + ¥'y2; + u; by the Cochrane-Orcutt method, assuming that u, is the

first-order serially correlated error.

Usually, choose (2).
However, there are two exceptions.

(i) The true value of ¢ is not one, i.e., less than one.
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(ii) y1,r and y, are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

. Cointegrating Vector:
Suppose that each element of y, is /(1) and that @y, is 1(0).
a is called a cointegrating vector (O O O O O O O ), which is not unique.

Set z; = a’y;, where z; is scalar, and a and y, are g X 1 vectors.

For z; ~ 1(0) (i.e., stationary)[]

T T
T_l ZZZZ = T_] Z(a’yr)z — E(Z,z)
=1 =1
For z; ~ I(1) (i.e., nonstationary, i.e., a is not a cointegrating vector),
T 1
)@y — X f (W) dr,
=1 0

where W(r) denotes a standard Brownian motion and A2 indicates variance of (1 — L)z;.
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If a is not a cointegrating vector, 7~ . 72 diverges.

— We can obtain a consistent estimate of a cointegrating vector by minimizing Zle 72 with

respect to a, where a normalization condition on a has to be imposed.

The estimator of the a including the normalization condition is super-consistent (7-consistent).

e Stock, J.H. (1987) “Asymptotic Properties of Least Squares Estimators of Cointegrating
Vectors,” Econometrica, Vol.55, pp.1035 — 1056.

Proposition:
Let y1, be a scalar, y, be a k x 1 vector, and (y1,,y5,)" be a g X 1 vector, where g = k + 1.

Consider the following model:

Yig=a+yyy+2z, Z

( ) =YD,
u

Ayr; = upy, 2.0
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€ is a g X 1 i.i.d. vector with E(e) = 0 and E(eg€;) = PP’.

A

. . a T Z y/2,[ ! Z yl,l
OLSE is given by: = .

¥ X2 XYaYs, ) \ XYy

Define A}, which is a g X 1 vector, and A3, which is a k X g matrix, as follows:
Ay
¥*(1) P = ( )
A,
Then, we have the following results: ,
Tl/Z(a, _ (Y) 1 (A; fW(r)dr) -1 hl
P (1)
Iy - A f Wrdr A} ( f (W) (W(r)Y dr) Ay) A

I W)
where ( ) = & ]
) A ( f W) (dW(r))') 2+ Bl
=0

W(r) denotes a g-dimensional standard Brownian motion.

1) OLSE of the cointegrating vector is consistent even though u; is serially correlated.
2) The consistency of OLSE implies that T~! 3\ & — o2,

3) Because T~! .(y1, — ¥,)* goes to infinity, a coefficient of determination, R?, goes to one.
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8.6 Testing Cointegration
8.6.1 Engle-Granger Test

ye~I(1)
Yy =@ +Yyr +u
e u; ~ I(0) = Cointegration

e u, ~ I(1) = Spurious Regression
Estimate y;, = @ + y'y2, + u, by OLS, and obtain #,.
Estimate I’/\lt = pﬁt—l + (SlAﬁl_] + 52Aﬁl_2 + -+ 61,_1Aﬁl_p+1 + é; by OLS.

ADF Test:
e Hy : p =1 (Sprious Regression)

e H; : p < 1 (Cointegration)
— Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Hansen (1992).
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Asymmptotic Distribution of Residual-Based ADF Test for Cointegration

# of Refressors, (a) Regressors have no drift (b) Some regressors have drift
excluding constant 1% 2.5% 5% 10% 1% 2.5% 5% 10%
1 -396 -3.64 -337 -3.07| -396 -3.67 -341 -3.13
2 -431 -4.02 -3.77 -345| -436 -4.07 -3.80 -3.52
3 -4.73 437 -411 -383 | -4.65 -439 -416 -3.84
4 =507 -471 -445 -4.16| -5.04 477 -449 -420
5 -528 —-498 -471 -443 | -536 -5.02 -474 -4.46

J.D. Hamilton (1994), Time Series Analysis, p.766.
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8.6.2 Error Correction Representation

VAR(p) model:
Vie=a+ 1yt tdoyiat o+ Py p t+ €,
where y;, @ and ¢ indicate g X 1 vectors fort = 1,2,---,T, and ¢ is a g X g matrix for s = 1,2, ---
Rewrite:
Vi =@+ Py +O01Ay 1 + 020y 5 + o+ +0,m 1Ay pi1 + &,
where

pP=¢1+dr+ -+,

05 = —(Pss1 + 052 + -+ ), fors=1,2,---,p—1.
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Again, rewrite:
Ayr = @+ 60y-1 + 01AY1-1 + 62Ay12 + - + +0p-1AY1-ps1 + &,

where
6o =p— 1, =—¢(1),

for ¢(L) = I, — ;L — 6:L? — - = §,LP.
If y, has h cointegrating relations, we have the following error correction representation:
Ay, =a—BA'y,_1 + 61AY—1 + Ay 0 + - + +0p_1AYi—pi1 + €,
where A’y,_ is a stationary & X 1 vector (i.e., & 1(0) processes), and B and A are g X & matrices.
Note that ¢(1) = BA” for ¢(L) =1, — 6L —6L> —---—5,L".

Each row of A” denotes the cointegrating vector, i.e., A’ consists of / cointegrating vectors.
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Suppose that € ~ N(0, X). The log-likelihood function is:

log l(, 61, , 6,1, BIA)

T T
- —Tg log(2m) -  log %]
1 T
—5 D Ay =+ BA'y = S1Ay 1 == 6y 1Ay p VT
2 t=1
X(Ay; =@+ BA"y,1 = §1Ay 1 — - = 6 po1AVi—pi1)
Given A and i, maximize log [ with respect to a, 61, -+, -1, B.

Then, given h, how do we estimate A? — Johansen (1988, 1991)
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(*) Canonical Correlatoion (0 00 0 0)

X' =(x1,x, -, xy)and y’ = (y1,¥2, -+, Ym), Where n < m.
u=dax=ayx;+axy+- -+ a,x,,
v=>b"y =biy1 + bayr + -+ + byym,

where V(u) = V(v) = 1 and E(x) = E(y) = 0 for simplicity.

Define:
V(x) = Xy, E(x)’,) = ny’ V@) = 2yy’ E(yxl) = Zyx = Z;y

The correlation coefficient between u and v, denoted by p, is:

o= Cov(u,v) b
WV
where V() = a’Zca = 1 and V(v) = b'X,,b = 1.

Maximize p = a’X,,b subject to a’X,ca = 1 and b'Z),b = 1.

The Lagrangian is:

1 1
L=dZ%,b- E/l(a’Zxxa -1 - E,u(b'Zyyb - 1.
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Take a derivative with respect to a and b.

oL oL
=3yb - A8a =0,

da ob
Using a’X,.a = 1 and b'Z,b = 1, we obtain:
A=p=ad%yb.
From the first equation, we obtain:
1
a= Z2;,}zxyb,

which is substituted into the second equation as follows:

%z;yz;;zxyb - AZ,b =0,
ie.,

() L Z Sy — 2L = 0,
ie.,

I8 2 E Zy — Ay = 0.

=X a—puX,b=0.

The solution of A2 is given by the maximum eigen value of Z;.IZ' Y115, and b is the corresponding

y “xy“<ixx

eigen vector.
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Back to the Cointegration:

Estimate the following two regressions:

Ay, = b1o + b11Ay-1 + b12AY2 + -+ + Dy p1 AYi—par + U,

Vo1 = boo + o 1Ay + Do Ay o + - + by | Ay piy + Uy

Obtain it;, fori =1,2and r = 1,2,---, T, and compute as follow:

From 2521 221511‘115212, compute h biggest eigenvalues, denoted by A;, A, - - -, A;, and the corresponding

eigen vectors, denoted by ay, ay, - - -, a,, where ;11 > ;12 >0 > /Alh,
The estimate of A, 4, is given by A= (ai,az,---,ap).
How do we obtain /?
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8.7 Testing the Number of Cointegrating Vectors

Trace Test (C O OO OO):

Hy: 211 =0

and H;: 4, >0.

8
2ogh ~logly) = =T ) log(1~1) — t(Q).

i=h+1

where 1 , 1 4 1
0= (fo W(r)dW(r)’) (fo W(r)W(r)’dr) (fo W(r)dW(r)') .
Trace Test for # of Cointegrating Relations
# of Random | (a) Regressors have no drift (b) Some regressors have drift
Walks (g — h) 1% 2.5% 5% 10% 1% 2.5% 5% 10%
1 11.576  9.658 8.083 6.691 | 6936 5332 3962 2816
2 21.962 19.611 17.844 15583 | 19.310 17.299 15.197 13.338
3 37.291 34.062 31.256 28.436 | 35397 32313 29.509 26.791
4 55.551 51.801 48.419 45248 | 53.792 50.424 47.181 43.964
5 77911 73.031 69.977 65956 | 76.955 72.140 68.905 65.063

J.D. Hamilton (1994), Time Series Analysis, p.767.
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Largest Eigenvalue Test (U OO0 OO0 0O):

H()Z /lh+l =0 and H,: Ah > 0.

2(logly —logly) = —T log(1 — ;lh+1) — maxmum eigen value of Q,

Maximum Eigenvalue Test for # of Cointegrating Relations

# of Random | (a) Regressors have no drift (b) Some regressors have drift
Walks (g — h) 1% 2.5% 5% 10% 1% 2.5% 5% 10%
1 11.576  9.658  8.083  6.691 | 6936 5332 3962 2816
2 18.782 16403 14595 12.783 | 17.936 15.810 14.036 12.099
3 26.154 23.362 21.279 18959 | 25521 23.002 20.778 18.697
4 32.616 29.599 27.341 24917 | 31.943 29335 27.169 24.712
5 38.858 35.700 33.262 30.818 | 38.341 35546 33.178 30.774

J.D. Hamilton (1994), Time Series Analysis, p.768.
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