9 oo

00O 000 O Frequency Domain[]

. oboboooo@oooboooono)ooon

o

f) =@m™ ) y(r)cos(an)

T=—00

o

=)' > y(@)exp(-idr)

T=—00

2. 0000000000 exp(if) = cos(d) + i sin(6)
=

cos(6) = %(exp(ie) + exp(—ie)), sin(9) = zl(exp(ie) - exp(—ie))

i

216



ooooo exp(i(é?l + 92)) = exp(if) exp(if>)

=

exp(i(éh + 92)) = cos(0; + 6,) + isin(0; + 6,)
exp(if)) exp(i6) = (005(6’1) + isin(@l))(cos(ez) + isin(92))

= cos(0;) cos(f,) — sin(f;) sin(6,) + i(cos((;h) sin(6,) + sin(6;) cos(Oz))
oood

cos(6y + 6,) = cos(6y) cos(6,) — sin(6;) sin(6,)

sin(8; + 6,) = cos(#,) sin(6») + sin(0;) cos(6,)

oooooo
3.500000000000000 fQ) =) 'o?

4. 0000O00OO0O0O0O0OO0OO0O00OO
7T
y(1) = f f(A) cos(Ar)da
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S Xwi<eoD0D0O00

s
Ve = Z WXe—j

j=r

DO x, 00000000000 WWOOOoOooooooo

W) = > wie

=

00000 ydbOo0o0oOoDOooooooooon
S Q) = WP f(2)
[(WI? 00000 (transfer function) 0 0 0 00O

WP = WOWQ)
= Z wje_w Z wjew

j=r j=r

W) O w)Oooooooooo
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6. MA(gp)ODOOQOQOoog

Vi=g+0i161+ - + 0464

={1+6L+ - +6,L¢

= 0(L)g
w=0L0 000 00000000000 f)O0y 00000000000 £
ogoood

Q) = 0e”™Hoe™) £.(2)
. . 0'2
= (9(e-“)er(e”)2—;r

- ogooan

7. AR(p)0o0oogdod:
d(Ly: = &

yi=¢L) e
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#L)y,=¢0000¢00000000000 £()00y» 00000000000 £)
oDoooo

1
D)= ———f(1
IO = S mgen <

2
1 o

deNp(eit) 2

8. ARMA(p,q)0DOOO0O0O:
#(L)y: = ()¢

yi = ¢(L) 'O(L)e
oLy, =60L) 00000 00000O0DOODOOO f(HODO yOODODODODOODODO
AMHOO000O0

g(e—i/l)g(ei/l)
() = ———f(4
PO= gemoem Y

_ Be™Mo(e™) o
T pleNg(eit) 21
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10 Generalized Method of Moments (GMM, L1 [J ] [
00)

10.1 Method of Moments (MM, [1 [1 1)

—_ 1<
As n — oo, we have the result: X = — Z X; — EX) = .
n
i=1
— Law of Large Number (0 OO0 0O)

X1, X5, - -+, X,, are n realizations of X.

[Review] Chebyshev’s inequality (0 0 00 OO0 D0 0O O) is given by:
2 2
PIX-ul>e<Z or PIX-pl<e=1-2,

€ €

where u = E(X), 0> = V(X) and any € > 0.
Note that P(IX —u| > e)+ P(X —ul <€) =1.

_ _ 2
Replace X, E(X) and V(X) by X, E(X) =y and V(X) = <,
n

Asn — oo,
2

PX-pl<o>1-" — 1.
ne
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Thatis,)_( — pasn — oo,

[End of Review]

X is an approximation of E(X) = u.
—_ 1<
Therefore, X = — Z X; is taken as an estimator of u.
n

i=1

= X is MM estimator of E(X) = u.
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MM is applied to the regression model as follows:
Regression model: y; = x;8 + u;, where x; and u; are assumed to be stochastic.

Familiar Assumption: E(x'u) = 0, called the orthogonality condition (0 00 [0 0 ),

where x is a 1 X k vector and u is a scalar.

We consider that (x;, x», - - -, x,,) and (uy, up, - - -, u,,) are realizations generated from random variables

x and u, respectively.
From the law of large number, we have the following:

1 & 1 <
— 4 P == ! i — Xj —_— ! = 0
. él xXiu . E x;(yi — x;8) E(x'u)

i=1

Thus, the MM estimator of 8, denoted by B, satisfies:

l n
- 4 i — Xj =0.
p ;:1 xX;(vi — xiBum)
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Therefore, By is given by:

n

Bum = (% Zn: xﬁxi)_l(% Z x}y[) =X'X)"'X'y,

i=1 i=1

which is equivalent to OLS and MLE.

Note that X and y are:
X1 Y1
X2 Y2
X = y=1 .
Xn Yn
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e However, B, is inconsistent when E(x'u) # 0, i.e.,
1 e
By = (X'X) X'y =+ (X'X) ' Xu=p+ (_x’x) (—Xu) o B
n n

Note as follows:

1 1 n
—X'u=- E U E(x'u) # 0.
p u . xXiu; — E(x'u)

i=1

In order to obtain a consistent estimator of 3, we find the instrumental variable z which satisfies

E(Zu) = 0.

Let z; be the ith realization of z, where z; is a 1 X k vector.

Then, we have the following:

1 1<
—Z’=—§’»[—>E'=O.
p, u . Zu (Z'u)

i=1

1 < 1 <
The S8 which satisfies — Z ziu; = 0 is denoted by By, i.e., — Z Z:(yi — x;Bv) = 0.
) i

Thus, B;y is obtained as: B
ﬂ _ (l C /x‘)il(l - ’ ) _ (ZIX)—IZ/
v = 0 ;:1 Z; Xi 0 ;:1 Ziyi| = Y-
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Note that Z’ X is a k X k square matrix, where we assume that the inverse matrix of Z’X exists.
Assume that as n goes to infinity there exist the following moment matrices:
1 - ’ 1 ’
~Ydni=-2X — M.,
n 4 n
i=1
I, 1,
- Zz,.z,- =-7'7 — M,,
n 4 n
i=1
1< 1
- ZZ:’“i =-Z'u — 0.
n e n

As n goes to infinity, By is rewritten as:
Bv=ZX)"'Zy=ZX)"'ZXB+u)=B+Z'X)"'Zu

= ﬁ + (%Z’X)fl(%Z'u) —> ﬁ + sz x 0 =ﬁ’

Thus, B;y is a consistent estimator of 5.
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e We consider the asymptotic distribution of S,y .
By the central limit theorem,

1
%Z'u — N(0,0°M.,)

1 1 1 1
Note that V(—=Z'u) = ~V(Z't) = ~E(Z' uil Z) = —E(E(Z’uu’Z|Z))
\/ﬁ n n n

1 1 1
= —E(Z’E(uu’|Z)Z) = —E(0?Z'2) =E(0*-Z'Z) — E(0*M,,) = 0*M.,.
n n n

We obtain the following asymmptotic distribution:
1 7 y\—1 1 ’ 201 —17
VB - pB) = (;Z X) (Wz u) — NO,0°M_ M M_")
Practically, for large n we use the following distribution:
By ~ N(B. #@ X' 222 X)),
2 1 ’
where 5% = ———(y = XBiv)'(y = XBrv)-

o In the case where z; is a 1 X r vector for r > k, Z’'X is a r X k matrix, which is not a square matrix.

= Generalized Method of Moments (GMM, 0 00O 000)
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10.2 Generalized Method of Moments (GMM, O OO OO O)

In order to obtain a consistent estimator of 5, we have to find the instrumental variable z which satisfies

E(zZ’u) = 0.
For now, however, suppose that we have z with E(z'u) = 0.
Let z; be the ith realization (i.e., the ith data) of z, where z; is a 1 X r vector and r > k.
Then, using the law of large number, we have the following:
Ly IZH]’ 1Zn] (0= xB) — ECuw) =0
— u=— 'ui = — . P — Xi —_—> u) = .
n i ; i ; )

The number of equations (i.e., r) is larger than the number of parameters (i.e., k).
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Let us define W as a r X r weight matrix, which is symmetric.

We solve the following minimization problem:

n , n
min R ) W RS 8)),
which is equivalent to:
min (26 - X)) W(Z 6~ X))
ie.,
H}fin = XB)YZWZ'(y - XP).
Note that 3", z/(y; — x;8) = Z'(y — XP3).
W should be the inverse matrix of the variance-covariance matrix of Z'(y — XB3) = Z'u.
Suppose that V(i) = 0>Q.
Then, V(Z'u) = E(Z'u(Z'u)') = BE(Z'ui' Z) = Z'Eu')Z = 0°Z'QZ = W',
The following minimization problem should be solved.
min (y - XB)Z(Z'QZ)'Z'(y - XP).

The solution of 8 is given by the GMM estimator, denoted by Bgara-
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Remark: For the model: y = X8 + u and u ~ (0,0%Q), solving the following minimization

problem:
min(y - X Q™! (y - Xp),
GLS is given by:
b=XQ'x)'x'Qly.

Note that b is the best linear unbiased estimator.
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Remark: The solution of the above minimization problem is equivalent to the GLE estimator of
B in the following regression model:

Zy=7Z'XB+Zu,

where Z,y, X,Banduare n X r,n X 1,n X k, k X 1 and n X 1 matrices or vectors.

Note that r > k.
y*=2Z'y, X* =7Z'X and u* = Z'u denote r X 1, r X k and r X 1 matrices or vectors, where r > k.

Rewrite as follows:
y =XB+u,
= ris taken as the sample size.
u*is arx 1 vector.
The elements of u* are correlated with each other, beacuse each element of u* is a function of u;, us,
ey Uy
The variance of u* is:

V') = V(Z'u) = c*Z'QZ.
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Go back to GMM:
- XBYZ(Z'QZ)'Z' (y - XB)
=Y Z(Z'QZ) 2y -BX Z(Z'QZ) 7'y -y Z(Z'QZ) ' ZXB + B X' Z(Z'QZ)" 7' X
=Y ZIWZ'y -2y Z(Z'Q2)"'Z'XB + B X' Z(Z' D7)~ 7' XB.
Note that 8'X’Z(Z'QZ)"'Z'y = y' Z(Z'QZ)~' 7' X because both sides are scalars.

‘A
OXAX _ 4+ A

0A
Remember that 22X _w and
X
Then, we obtain the following derivation:
0y - XBYZ(Z'QZ) ' Z' (y — XB)

B
= 20/Z(Z'QZ)'Z’'X) + (X’Z(Z’QZ)"Z’X + (X’Z(Z’QZ)"Z’X)')B

= 2X'Z(Z'Q2)'Z'y + 2X' Z(Z'QZ) ' 7' XB = 0
The solution of 8 is denoted by Bgara, Which is:
Boum = X'Z(Z'Q2)7 ' 2’ X) ' X' 2(2'Q2)~' 7' y.
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The mean of Bgyy is asymptotically obtained.

Boum = X' Z(Z'Q2)' 2’ X))\ X' 2(Z'Q2)" 2/ (XB + u)
=B+ (X'ZZ'QZ)' X)X’ 2(Z’QZ) " Z'u

=B+ ((lX'Z)(lZ’QZ)‘I(lZ’X))_l(lX'Z)(EZ’QZ)‘I(EZ’u)
n n n n n n

We assume that

1 1
-X'7Z — M,, and -Z'QZ — My,
n n

which are k X r and r X r matrices.

1
From the assumption of —Z'u — 0, we have the following result:
n
Bomm — B+ (MM M) My Mg X0 =B,

Thus, Beuum 1s a consistent estimator of g (i.e., asymptotically unbiased estimator).
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The variance of S is asymptotically obtained as follows:

V(Baun) = E{(Bown ~ EBoun) Bt ~ BB ) = B Bown ~ BB ~ B )
= E((X’Z(Z'QZ)—‘Z'X)—lx’Z(z’QZ)—‘z’u((x'Z(z'QZ)-lz'X)—lx’Z(z'QZ)-lz'u)’)
= E((X’Z(Z’QZ)‘IZ’X)‘lX’Z(Z’QZ)‘IZ’uu’Z(Z’QZ)‘lZ’X(X’Z(Z’QZ)‘IZ’X)‘I)
~ (X'Z(Z'QZ2) ' 72’ X) ' X' 2(Z'Q2) ' 2B ) Z(Z'Q2) " 2 X(X' Z(Z'QZ) ' 7' X) 7!
=X’ Z2(Z'Q2) ' 7' x)7".

Note that Bgyy — B implies E(Bguy) — B in the 1st line.

~ in the 4th line indicates that Z and X are treated as exogenous variables although they are stochastic.

We assume that E(u’) = 02Q from the 4th line to the 5th line.
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e We derive the asymptotic distribution of Sgu.

From the central limit theorem,

1 !
%z u — N, 0*M..).

Accordingly, Beumu is asymptotically distributed as:

1 1 1 -1 1 1
VnBeum — B) = ((—X’Z>(—Z'QZ>‘1<—Z'X>) (=X'Z)(=Z'QZ) " (—=Z"u)
n n n n n \n

— N, o> (MM M)™).
Practically, we use: Boum ~ N(ﬁ, sz(X’Z(Z’QZ)"Z’X)‘l),
1 b
where 5 = ——(y = XBewm) Q' (v = XBaw).

We may use n instead of n — k.
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Identically and Independently Distributed Errors:
o If uy, up, - -+, u, are mutually independent and ; is distributed with mean zero and variance o2, the

mean and variance of u* are given by:
Ew)=0 and V@) =Euu")=0ZZ
Using GLS, GMM is obtained as:
-1
Boum = XV(Z'2)' X)X (Z'2) Ny = (X’Z(Z’Z)‘IZ’X) X'Z(Z'2)"'Z'y.
e We derive the asymptotic distribution of Sy -

From the central limit theorem,

1
Wz’u — N(0,0°M,).
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Accordingly, Bguum is distributed as:
1 ’ 1 rn—1 1 ’ -l 1 ’ 1 1 7n—1 1 ’
VnBeum —B) = ((—X IN(=2'2)" (-2 X)) (=X'Z)-Z2'Z) (—=Z"u)
n n n n n \n
- N(O, aZ(MﬂM;Z‘M;Z)—').
Practically, for large n we use the following distribution:
fow ~ N[, S X 2Z 27 7%,

1 ,
where s = m(y = XBoum)' (v — XBemm)-
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e The above GMM is equivalent to 2SLS.

X:nxk, Z:nXxr, r>k.

Assume:

1 ’ 1 - ’ /
;Xuz ;leiui — E('u) £ 0,
=

1 1<
~Z'u= - Zz;ui — E(Zu) =0.
n n &

Regress X on Z, i.e., X = ZI' + V by OLS, where I is a r X k unknown parameter matrix and V is an

error term,

Denote the predicted value of X by X = ZI' = Z(Z’2)"' 2’ X, where I = (2’2)"'Z'X.
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Review — IV estimator: Consider the regression model is:
y=XB+u,

Assumption: E(X'u) # 0 and E(Z'u) = 0.
The n X k matrix Z is called the instrumental variable (IV).
The IV estimator is given by:

Brv =Z'X)"'Zy,
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e Note that 2SLS is equivalent to IV in the case of Z = X, where this Z is different from the previous
Z.
This Z is a n X k matrix, while the previous Z is a n X r matrix.
Z in the IV estimator is replaced by X.
Then,
Basis = (KX %'y = (X 2227 2X) X222 2y = Boww.

GMM is interpreted as the GLS applied to MM.
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Serially Correlated Errors (Time Series Data):
e Suppose that u;, u, - - -, u, are serially correlated.

Consider the case where the subscript represents time.
Remember that Boyy ~ N(,B, crX'Z(Z'QZ)"' 7 X)7! )

We need to consider evaluation of 022’QZ = V(u*), i.e.,
V') = VZ'w) = VO Zu) =V )

i=1 i=1

= E((zn: Vi)(zn: Vi)') = E((zn: vi)(i vj)')
=1 il pru

=

=
~

=

=

where v; = Z/u; is a r X 1 vector.
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Define I'y = E(vv]_).

[y = E(v;v;) represents the r X r variance-covariance matrix of v;.

I, = Evi)) = B(w)) = (E(viv;,))/ -

V(') = Z Z E(viv)

i=1 j=1

=EWwv)) + E(vivy) + Eivy) + -+
+ E(v2v]) + Env)) + E(vv)) + -+

+ E(v3v)) + E(av)) + E(v3v)) + -+

+ E(vv)) + Epvy) + Evpvy) + -+

:F0+F_1+F_2+ +F1_n
+ 0+l +T+ - +To,

+ I+ +Tg+ -+ +15,

242

+E(1v))
+ E(vov))

+ E(v3v))

+E,v))



+ g+ + 0,5+ - +10

_ ’ ’ ’
=TIo+I +I5+ -+ +17_,

+0+T+T+ - +T7,
++0 +T0+ -+ +1 5
+ g+ + 03+ - +10)

= Lo+ (- +T)+ (=2 +T) + - + Ty +T7_)

= nly + ni(n — )T +T7)
i=1
n—1 .
- n(FO + ;(1 - i)(ri + r;))

~ n(Fo + i(l - q%)(ri + F;))-
im1
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In the last line, n — 1 is replaced by ¢, where ¢ < n — 1.

. . 1 ©
We need to estimate I'; as: [, = — Z :9;_,. where 9; = z.@; for it; = y; — xiBmm-

i=1+1

As 7 is large, ', is unstable.

Therefore, we choose the ¢ which is less than n — 1.
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Hansen’s J Test: Is the model specification correct?

That is, is E(z’u) = 0 for y = x8 + u correct?

Hy : E(z'u) =0 (The model is correct. Or, the instrumental variables are appropriate.)

H,: E(Zu) #0

The number of equations is r, while the number of parameters is k.

The degree of freedom is r — k.

(L '” Z{ﬁi)’(v(izziﬁi))_l(i' Z{-ﬁi) s =k,

where it; = yi = xiBemm-
1 < 1 <
V(; Z z:@;) indicates the estimate of V(; Z Ziu;) for u; = y; — x;B.
i=1 i=1

The J test is called a test for over-identifying restrictions (0 O O O O O).

Remark 1: X, X;,---, X, are mutually independent.

X; ~ N(u, 0'2) are assumed.
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= 1
Consider X = - ZIX,
pan

X-BX) X-pu

| \/\% ~o/vn

That is, V(X —pu) — N(O,0?).

Then

— N(0,1).

Remark 2: X, X, --, X, are mutually independent.

X; ~ N(u, 0%) are assumed.

Xi—pu\Y (Xi—py
Then, (S5E) = v and 3 (Z5E) - w0

_ n Xi _)—( 2
If 1 is replaced by its estimator X, then Z( = ) ~ xXi(n—1).
i=1
Note: _ —
X, -X\ (0> 0\'(Xi—-X
n - X 2 X
Z X, — X \2 B Xi— X o Xi— X ) .
2 - : .. : ~ X (n_ )
lzl O— . . .
X,-Xx)\o o2 X, - X
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In the case of GMM,
1 n
— > zu; — N(0,%),
Vi

1 n
where ¥ = V(— z;ui).
\z ;

. 1 n , 1 n
Therefore, we obtain: (— Z z;ui) 2_1(— Z zl’.u,-) — X0).
Vn i=1 Vn i=1
In order to obtain #;, we have to estimate 8, which is a k X 1 vector.

1 n , 1 n
Therefore, replacing u; by iI;, we have: (— zl’-ft,-) ! (— Z:fli) — Y(r—k).
PISUEN D)

R 1 2 N 1 « .
Moreover, from X — X, we obtain: (— Z zl’ﬁi) 2*1(— Z zl’ft,-) — Xz(r — k), where X is a
= Vi

consistent estimator of X.
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10.3 Generalized Method of Moments (GMM, O 00O O O0) II
— Nonlinear Case —

Consider the general case:

E(h(6;w)) = 0,

which is the orthogonality condition.

A k x 1 vector 6 denotes a parameter to be estimated.

h(6;w)is ar x 1 vector for r > k.

Let w; = (y;, x;) be the ith observed data, i.e., the ith realization of w.

Define g(0; W) as:

1 n
O,Wz_ he, i)s
26, W) ”Z‘( W)

where W = {w,,, w,_1,-- -, w1 }.

g(@; Wyisarx 1 vector for r > k.
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Let 6 be the GMM estimator which minimizes:
gO; WyS~'g(6; W),

with respect to 6.

e Solve the following first-order condition:

og(6; Wy

1
50 ST gO; W) =

with respectto 6.  There are r equations and k parameters.

Computational Procedure:

Linearizing the first-order condition around 6 = 0,

0= ag(z WY §-140: W)
ag(e wy ., dg(6; W)’ _, 0g(0; W)
BRGNS A4
20 sO:W)+ =g o0
=D'S7'e@; W)+ D'S™ D - 0),
where D = M, which is a r X k matrix.

0o’
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Note that in the second term of the second line the second derivative is ignored and omitted.

Rewriting, we have the following equation:
0-0=—D'S'D)y'D'S g6, W).
Replacing 6 and 8 by 8 and 87, respectively, we obtain:

é(i+1) — é(i) _ (l’j(i)/S—ID(i))—lﬁ(i)/S—1g(é(i); W),

L 020D W
where DY = 080" W)
69, A A
Given S, repeat the iterative procedure fori = 1,2, 3, - - -, until 9D ig equal to 9o,

How do we derive the weight matrix S ?
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e In the case where h(0; w;),i = 1,2,---,n, are mutually independent, S is:

S

v( Vg 0: W) = nE(g0; Wige; wy )

(o) S =

% Z; E{6: won(e: ),

n n

> - E{@: whe: )

i=1l j=1

which is a X r matrix.
Note that
@) E(h(@; wi)) = 0 for all i and accordingly E(g(@; W)) =0,

1 1
(i) g(O: W)=~ > h(@:w) =~ > hb:w).
i=1 =1
(iii) E(h(e; Wwh(; wj)') = 0fori# J.

n

h(@; w)h(@; w;)) —> S.

S| =

The estimator of S, denoted by § is given by: § =
i=1
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e Taking into account serial correlation of 2(8; w;), i = 1,2,---,n, S is given by:

= V( Vag(: W) = nE(0; Wyg0; W)

n n
1

- nE((% Zn:h(e; w; )( Z Io; w,))) 22 E(h(e WOh(O; W)’ )
=1

j=1

n
Note that E(Z h(o: wi)) = 0.
i=1

Define I'; = E(h(@; wi)h(6, wi_T)’) < 00, i.e., h(f; w;) is stationary.
Stationarity:
@) E(h(@; wi)) does not depend on i,

(ii) E(h(@; wih(0,; wi_T)’) depends on time difference .
— E(h(e; WOh(6: wi_,)’) -T

Z Z (h(e wih(; w;)’ )

11]1
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B0 w20 w1 ) + E(hO5 wl(@: wa) ) + -+ E(h(@: w26,

(05 w05 w1 ) + E(h@: wdh(@; wa) )+ -+ + E(hO: w05 w,'))

1
=-Ty +I7 +I% + - 40,
n
rr +Tp +I7 + - +T,,
Iﬁn—l"'rn—Z"'Fn—3+"’"'FO)

1
= —(nFO +m-DT+TD+-2)T2+T)+ -+ + T + F;_l))
n
n—1 . n—1 .
n—i 4
=T+ ) — @+ =T+ 1——)1",-+1"’.
o+ 2 >OZ]( L))

q .
l

=TIy + 1— —— I+ 1.

0 ;( q+1)( 2
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Note that I, = E(h(@; wi_2)h(6, w,-)’) =TI'(-7), because I'; = E(h(@; wi)h(0; w,-_T)’).

In the last line, n is replaced by g + 1, where g < n.

N R .
We need to estimate ['; as: I, = — Z hO; w)h(@;wi_,) .
n

i=71+1

As 7 is large, f"T is unstable.

Therefore, we choose the ¢ which is less than n.
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S is estimatated as:

q .

A A l A A

S=Ty+ (1— )(r,-+r;>,
; g+1

— the Newey-West Estimator

Note that S — S, because fT — [;asn — oo.

Asymptotic Properties of GMM:

GMM is consistent and asymptotic normal as follows:
Vi@ - 0) — N(0.(0's D)),

where D is a r X k matrix, and D is an estimator of D, defined as:

_0gO:W) 5 9gO:W)

D
0o’ 0e
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Proof of Asymptotic Normality:
Assumption 1: § — 6

Assumption 2:  +/ng(6; W) — N(0,S), ie., S = lim V( Vng(6; W)).

The first-order condition of GMM is:

9(6; WY

= S7'g(6; W) = 0.

The GMM estimator, denote by 9, satisfies the above equation.

Therefore, we have the following:

256



Linearize g(6; W) around & = 6 as follows:

8@ W) = g(; W) + g; )(0 0) = g(6; W) + D(0 - 0),

g(6; W)
oy
=— Theorem of Mean Value (U OO OO 0O)

where D = , and 9 is between Hand 6.

Substituting the linear approximation at & = 6, we obtain:

0=D8"g0;w)
=DS- (g(e W) + D( — 9))
= le(0; W)+ D'S™'D(6 - ),
which can be rewritten as:
0-60=—D'S'D)y'D'S g6, W).

dg(6; W)

Note that D =
oo

, Where 0 is between # and 6.

From Assumption 1, § — 6 implies § — 6
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Therefore,

Vi@ -0) = —=(D'S™'D)'D'S ! x Vng(6; W).

Accordingly , the GMM estimator & has the following asymptotic distribution:
V-6 — N(O, (D’S‘ID)‘I).

Note that D — D, D — D, § — S and Assumption 2 are utilized.
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Computational Procedure:
i
q+1

PN P .
)(F,- +1I7), where I's = — Z O, w)h(0; w;_;)'. qis setby a
n

i=1+1

q
(1) Compute $@ =1 + Z(l -

i=1
researcher.

(2) Use the following iterative procedure:
D = g _ (P §O=1 HDY-1 i D=1 o@D, 7).

(3) Repeat (1) and (2) until 8% is equal to 6.

In (2), remember that when S is given we take the following iterative procedure:

é(Hl) — 9(1') _ (D(i)/s—ID(i))—ID([)/S—lg(é(i); W),

dg(@; W)

5 S is replaced by §@.

where D® =
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o If the assumption E(h(@; w)) = 0 is violated, the GMM estimator 8 is no longer consistent.

Therefore, we need to check if E(h(@; w)) =0.

From Assumption 2, note as follows:
7 = (Vag@w)) $7(Vag@ W) — £ -k,
which is called Hansen’s J test.

Because of r equations and k parameters, the degree of freedom is given by r — k.

If J is small enough, we can judge that the specified model is correct.
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Testing Hypothesis:

Remember that the GMM estimator @ has the following asymptotic distribution:
Vi@ - 0) — N(0.(0's D))

Consider testing the following null and alternative hypotheses:
e The null hypothesis: Hy: R =0,
e The alternative hypothesis: H; : R(6) # 0,

where R(6) is a p X 1 vector function for p < k.

p denotes the number of restrictions.

N 5 OR(6
R(0) is linearized as: R(0) = R(#) + Ryz(0 — §), where R; = % which is a p X k matrix.
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Note that 6 is bewteen d and §. If§ — 6, thend — fand R; — Ry.

Under the null hypothesis R(6) = 0, we have R(@) = Rﬁ(é — 6), which implies that the distribution of
R(®) is equivalent to that of Rg(é —0).
The distribution of vnR(6) is given by:

ViR(@) = VnRy(6 - 6) — N(O,RQ(D’S"D)"R;).
Therefore, under the null hypothesis, we have the following distribution:
nR(@)(Rg(D’S’ID)’IR;)_]R(Q)’ — ().

Practically, replacing 6 by 8 in Ry, D and S, we use the following test statistic:
nR(@)(Rg(D'S'" D)—‘R;;)_IR(?))’ — ).

— Wald type test
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Examples of k(6; w):
1. OLS:
Regression Model:  y; = x;8+¢€, E(xjg)=0
h(6; w;) is taken as:
h(8; wi) = x;(yi = x;B).
2. IV (Instrumental Variable, 0 0 0 0 O):
Regression Model:  y; = xi8+¢, E(xie)#0, E(Zg) =0
h(0;w;) is taken as:
h@; wi) = z;(yi — x;B),
where z; is a vector of instrumental variables.
When z; is a 1 Xk vector, the GMM of 8 is equivalent to the instrumental variable (IV) estimator.

When z; is a 1 X r vector for r > k, the GMM of S is equivalent to the two-stage least squares

(2SLS) estimator.
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3. NLS (Nonlinear Least Squares, 1 0O 00O 0O0):
Regression Model:  f(y;, x;,8) = €, E(xjg) #0, E(zl) =0
h(0; w;) is taken as:

@ wi) = 2. f (i xi, B)

where z; is a vector of instrumental variables.
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Example: Demand function using STATA

gbooobooboooooboooooao

527501

S AOANOABRNWNUINOCOO RS
PR RRRRPRRPRRPRRORRERERRERRR

.050410
.089510
.020640
.000000
.994856
.043610
.066870
.040420
.025960
.057170
.047620
.016130
.000000
.018020

Ll N — N — N — NN — NN NN — NN — N — N — N —N—]

ooo

ooooo

CPI10 00O CPIO
O CcPIO OO CpPIO
CPI0 OO CPIO
p2 p3
.884965 0.818365
886179 0.822154
891282 0.834872
876543 0.843621
865226 0.868313
862745 0.887513
878601 0.891975
.886831 0.908436
.894523 0.932049
.898148 0.934156
.889119 0.924352
.894081 0.925234
.904366 0.917879
.909938 0.916149
.971774 0.960685
.000000 1.000000
.019020 1.017020
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2017 531693 6106.6 1.027890 1.066730 1.025900

. tsset year
time variable: vyear, 2000 to 2017
delta: 1 unit

. reg ql y pl p2 p3 if year>2000.5

Source | SS df MS Number of obs = 17
————————————— o F(4, 12) = 25.83
Model | 913640.443 4 228410.111 Prob > F = 0.0000
Residual | 106100.077 12 8841.67308 R-squared = 0.8960
————————————— t-——— - ————————-—- Adj R-squared = 0.8613
Total | 1019740.52 16 63733.7825 Root MSE = 94.03

ql | Coef Std. Err t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
y | .0067843 .0045443 1.49 0.161 -.003117 .0166856

pl | -1128.834 998.7698 -1.13  0.280 -3304.966 1047.299

p2 | 356.8095 806.2301 0.44 0.666 -1399.815 2113.434

p3 | -3442.221 1130.078 -3.05 0.010 -5904.448 -979.9931

cons | 6850.563 3179.316 2.15 0.052 -76.57278 13777.7

. gmm (gql-{b0}-{bl}*y-{b2}*pl-{b3}*p2-{b4}*p3) if year>2000.5, instruments(y pl
> p2 p3)
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Step 1

Iteration 0: GMM criterion Q(b)
Iteration 1: GMM criterion Q(b)
Iteration 2: GMM criterion Q(b)

42400764
6.781e-12
6.781le-12 (backed up)

Step 2
Iteration O: GMM criterion Q(b)
Iteration 1: GMM criterion Q(b)
convergence not achieved
The Gauss-Newton stopping criterion has been met but missing standard errors
indicate some of the parameters are not identified.

1.966e-15
1.963e-15 (backed up)

GMM estimation

Number of parameters = 5
Number of moments = 5
Initial weight matrix: Unadjusted Number of obs = 17
GMM weight matrix: Robust
| Robust
| Coef Std. Err z P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
/b0 | 6850.563 17645.71 0.39 0.698 -27734.4 41435.53
/bl | .0067843 .0282325 0.24 0.810 -.0485504 .062119
/b2 | -1128.834 1057.915 -1.07 0.286 -3202.309 944.6415
/b3 | 356.8095 1565.86 0.23 0.820 -2712.219 3425.838
/b4 | -3442.221 5085.561 -0.68 0©.498 -13409.74 6525.296



Instruments for equation 1: y pl p2 p3 _cons
Warning: convergence not achieved

.ogmm (gql-{b0}-{b1}*y-{b2}*pl-{b3}*p2-{b4}*p3) if year>2000.5, instruments(pl p2
> p3 1l.pl 1.p2 1.p3)

Step 1
Iteration 0: GMM criterion Q(b) = 42404066
Iteration 1: GMM criterion Q(b) = 2790.3146
Iteration 2: GMM criterion Q(b) = 2790.3146
Step 2
Iteration O: GMM criterion Q(b) = .3201826
Iteration 1: GMM criterion Q(b) = .2469289
Iteration 2: GMM criterion Q(b) = .2469289
GMM estimation
Number of parameters = 5
Number of moments = 7
Initial weight matrix: Unadjusted Number of obs = 17
GMM weight matrix: Robust
| Robust
| Coef. Std. Err. z P>|z]| [95% Conf. Interval]
_____________ +________________________________________________________________
/b® | -1192.466 4669.012 -0.26 0.798 -10343.56 7958.63
/bl | .0186312 .0067682 2.75 0.006 .0053657 .0318967
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/b2 | -1016.864 780.979 -1.30 0.193 -2547.554 513.8271
/b3 | -905.5585 598.0885 -1.51 0.130 -2077.79 266.6734
/b4 | -499.8064 1147.985 -0.44 0.663 -2749.815 1750.202

Instruments for equation 1: pl p2 p3 L.pl L.p2 L.p3 _cons
. estat overid

Test of overidentifying restriction:

Hansen’s J chi2(2) = 4.19779 (p = 0.1226)
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