
Moreover, we consider the following:

1√
Tσ

yt′ =
1√
Tσ

(ε1 + ε2 + · · · + εt′) −→ N(0, r′) ≡ W(r′).

For t′ > t, we have the following:

1√
Tσ

yt′ =
1√
Tσ

(ε1 + · · · + εt + εt+1 + · · · εt′) −→ N(0, r′) ≡ W(r′)

=
1√
Tσ

yt +
1√
Tσ

(εt+1 + · · · εt′).

Therefore, we have

1√
Tσ

yt′ − 1√
Tσ

yt =
1√
Tσ

(εt+1 + · · · εt′) −→ N(0, r′ − r) ≡ W(r′) −W(r).

That is, W(r) is independent of W(r′) −W(r) for r′ > r.
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Moreover, note as follows:

1

T
√

Tσ

T∑

t=1

yt =
1
T

T∑

t=1

( yt√
Tσ

)
−→

∫ 1

0
W(r)dr

where
1
T

and
T∑

t=1

are replaced by dr and
∫ 1

0
as T goes to infinity.

We devide the time interval (0, 1) into T time intervals
( t
T
,

t + 1
T

)
.

That is, time interval (1, T ) is transformed into (0, 1).

(*) We know that
yt√
Tσ

−→ W(r) as
t
T
−→ r.
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Summary: Properties of W(r) for 0 < r < 1:

1. W(r) ≡ N(0, r) =⇒ W(r) is a random variable.

2. W(1) ≡ N(0, 1)

3. W(1)2 ≡ χ2(1) =⇒ Remember that Z2 ∼ χ2(1) when Z ∼ N(0, 1).

4. W(r) is independent of W(r′) −W(r) for r < r′.

5. W(r4) −W(r3) is independent of W(r2) −W(r1) for 0 ≤ r1 < r2 < r3 < r4 ≤ 1.

=⇒ The interval between r4 and r3 is not overlapped with the

interval between r2 and r1.
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• True Model yt = yt−1 + εt vs Estimated Model yt = φyt−1 + εt: Under φ = 1, we

estimate φ in the regression model:

yt = φyt−1 + εt

OLS of φ is:

φ̂ =

∑T
t=1 yt−1yt∑T

t=1 y2
t−1

= φ +

∑T
t=1 yt−1εt∑T
t=1 y2

t−1

As mentioned aove, the numerator is related to:

1
σ2T

T∑

t=1

yt−1εt =
1
2

(
yT

σ
√

T

)2

− 1
2σ2

1
T

T∑

t=1

ε2
t −→

1
2

W(1)2 − 1
2

which is rewritten by using the Brownian motion W(1).

The denominator is:

1
σ2T 2

T∑

t=1

y2
t−1 ≈

1
σ2T 2

T∑

t=1

y2
t =

1
T

T∑

t=1

(
yt

σ
√

T

)2

−→
∫ 1

0
W(r)2dr
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where
1
T
−→ dr and

yt

σ
√

T
−→ W(r) for

t
T
−→ r.

Thus, under φ = 1, T (φ̂ − φ) is asymptotically distributed as follows:

T (φ̂ − φ) = T (φ̂ − 1) =

1
σ2T

T∑

t=1

yt−1εt

1
σ2T 2

T∑

t=1

y2
t−1

−→
1
2

(
W(1)2 − 1

)

∫ 1

0
W(r)2dr

• t value:

In the regression model: yt−yt−1 ≡ ∆yt = ρyt−1 +εt, OLSE of ρ = φ−1 is given by ρ̂ = φ̂−1.

t value is
ρ̂

sρ
=
φ̂ − 1

sφ
, where sρ and sφ denote the standard errors of ρ̂ and φ̂.

Note that sρ = sφ because of V(ρ̂) = V(φ̂ − 1) = V(φ̂).

The standard error of φ̂, denoted by sφ, is given by: s2
φ =

s2

∑T
t=1 y2

t−1

, where s2 =
1
T

T∑

t=1

(yt −

φ̂yt−1)2, called the standard error of regression.
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s2 =
1
T

T∑

t=1

(yt − φ̂yt−1)2

=
1
T

T∑

t=1

(εt − (φ̂ − 1)yt−1)2

=
1
T

T∑

t=1

ε2
t − 2

1
T

1
T

(φ̂ − 1)
T∑

t=1

yt−1εt +
1
T

(φ̂ − 1)2
T∑

t=1

y2
t−1

=
1
T

T∑

t=1

ε2
t − 2

σ2

T

[
T (φ̂ − 1)

][ 1
Tσ2

T∑

t=1

yt−1εt

]
+
σ2

T

[
T (φ̂ − 1)

]2[ 1
T 2σ2

T∑

t=1

y2
t−1

]

−→ σ2.

The random variables in
[
·
]

converge in distribution..

Note that in the right hand side of the fourth line the second and third terms go to zero,
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because we know the followings:

1
T

T∑

t=1

ε2
t −→ σ2

T (φ̂ − 1) −→
1
2

(
W(1)2 − 1

)
∫ 1

0
W(r)2dr

1
Tσ2

T∑

t=1

yt−1εt −→ 1
2

W(1)2 − 1
2

1
T 2σ2

T∑

t=1

y2
t −→

∫ 1

0
W(r)2dr

Therefore, from s2
φ =

1
T 2σ2

s2

1
T 2σ2

∑T
t=1 y2

t−1

, we obtain T 2s2
φ −→

(∫ 1

0
W(r)2dr

)−1
.

t value is given by:

φ̂ − 1
sφ

=
T (φ̂ − 1)

T sφ
−→

1
2

(
W(1)2 − 1

)
/
∫ 1

0
W(r)2dr

(∫ 1

0
W(r)2dr

)−1/2 =

1
2

(
W(1)2 − 1

)
(∫ 1

0
W(r)2dr

)1/2 ,
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which is not a normal distribution.
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• True Model yt = yt−1 + εt vs Estimated Model yt = α + φyt−1 + εt: Under α = 0

and φ = 1, we estimate α and φ in the regression model:

yt = α + φyt−1 + εt

OLSEs of α and φ are:

(
α̂

φ̂

)
=

( T
∑

yt−1
∑

yt−1
∑

y2
t−1

)−1 ( ∑
yt

∑
yt−1yt

)
=

(
α

φ

)
+

( T
∑

yt−1
∑

yt−1
∑

y2
t−1

)−1 ( ∑
εt

∑
yt−1εt

)

=

(
α

φ

)
+

1
T

∑
y2

t−1 − (
∑

yt−1)2

( ∑
y2

t−1 −∑
yt−1

−∑
yt−1 T

) ( ∑
εt

∑
yt−1εt

)

=

(
α

φ

)
+

1
T

∑
y2

t−1 − (
∑

yt−1)2

( (
∑

y2
t−1)(

∑
εt) − (

∑
yt−1)(

∑
yt−1εt)

−(
∑

yt−1)(
∑
εt) + T (

∑
yt−1εt)

)
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=

(
α

φ

)
+



(
∑

y2
t )( 1

T

∑
εt) − y

∑
yt−1εt∑

y2
t − Ty2

−y
∑
εt +

∑
yt−1εt∑

y2
t − Ty2



Note that 1
T

∑
yt−1 ≈ 1

T

∑
yt = y and

∑
y2

t−1 ≈
∑

y2
t for large T .

In the true model, α = 0 and φ = 1.

(
α̂

φ̂ − 1

)
=



(
∑

y2
t )( 1

T

∑
εt) − y

∑
yt−1εt∑

y2
t − Ty2

−y
∑
εt +

∑
yt−1εt∑

y2
t − Ty2



For each element of the vector, we consider each term in the numerator and denominator.
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•
T∑

t=1

yt−1εt:

Taking the square of yt = yt−1 + εt on both sides, we obtain: y2
t = y2

t−1 + yt−1εt + ε2
t .

Then, we can rewrite as: yt−1εt =
1
2

(y2
t − y2

t−1 − ε2
t ) for y0 = 0.

Taking a sum from t = 1 to T , we have:

T∑

t=1

yt−1εt =
1
2

T∑

t=1

(y2
t − y2

t−1 − ε2
t ) =

1
2

y2
T −

1
2

T∑

t=1

ε2
t ,

which is divided by Tσ2 on both sides, then we obtain:

1
Tσ2

T∑

t=1

yt−1εt =
1
2

( yT√
Tσ

)2 − 1
2σ2

1
T

T∑

t=1

ε2
t −→

1
2

W(1)2 − 1
2
.

Note that
yT√
Tσ

= W(1) and
1
T

T∑

t=1

ε2
t −→ E(ε2

t ) = σ2.
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• y:

Note that
1
T

T∑

t=1

yt = y and
1
T

T∑

t=1

yt−1 = y. We can rewrite y as follows:

y =
1
T

T∑

t=1

yt =
√

Tσ
1
T

T∑

t=1

yt√
Tσ

which is rewritten as:

y√
Tσ

=
1
T

T∑

t=1

yt√
Tσ

−→
∫ 1

0
W(r)dr

Note that
yt√
Tσ

−→ W(r) as
t
T
−→ r.
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•
T∑

t=1

εt:

From yT =
∑T

t=1 εt, we have:
1√
Tσ

T∑

t=1

εt =
yT√
Tσ

= W(1).

•
T∑

t=1

y2
t−1:

From
T∑

t=1

y2
t−1 ≈

T∑

t=1

y2
t , we obtain:

1
T

T∑

t=1

( yt√
Tσ

)2 −→
∫ 1

0
W(r)2dr.

Note that
yt√
Tσ

−→ W(r) as
t
T
−→ r.
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Thus, φ̂ − 1 =

∑
yt−1εt − y

∑
εt∑

y2
t − Ty2 is rerwitten as:

T (φ̂ − 1) =

1
Tσ2 (

∑
yt−1εt − y

∑
εt)

1
T 2σ2 (

∑
y2

t − Ty2)
=

1
Tσ2

∑
yt−1εt −

( y√
Tσ

)( 1√
Tσ

∑
εt

)

1
T

∑( yt√
Tσ

)2 −
( y√

Tσ

)2

−→
1
2

(
W(1)2 − 1

)
−W(1)

∫ 1

0
W(r)dr

∫ 1

0
W(r)2dr −

(∫ 1

0
W(r)dr

)2

Remember that OLSE of α is given by:

α̂ = α +
(
∑

y2
t )( 1

T

∑
εt) − y

∑
yt−1εt∑

y2
t − Ty2
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Under α = 0, α̂ is rewritten as follows:

√
T α̂ =

σ
( 1
T

∑( yt√
Tσ

)2)( 1√
Tσ

∑
εt

)
− σ

( y√
Tσ

)( 1
Tσ2

∑
yt−1εt

)

1
T

∑( yt√
Tσ

)2 −
( y√

Tσ

)2

−→
σW(1)

∫ 1

0
W(r)2dr − σ 1

2 (W(1)2 − 1)
∫ 1

0
W(r)dr

∫ 1

0
W(r)2dr −

(∫ 1

0
W(r)dr

)2

Thus, convergence speed of φ̂ is different from that of α̂.

Neither
√

T α̂ nor T (φ̂ − 1) are normal.

190



8.3 Serially Correlated Errors

Consider the case where the error term is serially correlated.

8.3.1 Augmented Dickey-Fuller (ADF) Test

Consider the following AR(p) model:

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt, εt ∼ iid(0, σ2),

which is rewritten as: φ(L)yt = εt.

When the above model has a unit root, we have φ(1) = 0, i.e., φ1 + φ2 + · · · + φp = 1.

The above AR(p) model is written as:

yt = ρyt−1 + δ1∆yt−1 + δ2∆yt−2 + · · · + +δp−1∆yt−p+1 + εt,

where ρ = φ1 + φ2 + · · · + φp and δ j = −(φ j+1 + φ j+2 + · · · + φp).
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The null and alternative hypotheses are:

H0 : ρ = 1 (Unit root),

H1 : ρ < 1 (Stationary).

Use the t test, where we have the same asymptotic distributions.

We can utilize the same tables as before.

Choose p by AIC or SBIC.

Use N(0, 1) to test H0 : δ j = 0 against H1 : δ j , 0 for j = 1, 2, · · · , p − 1.

Reference

Kurozumi (2008) “Economic Time Series Analysis and Unit Root Tests: Development and

Perspective,” Japan Statistical Society, Vol.38, Series J, No.1, pp.39 – 57.

Download the above paper from:

http://ci.nii.ac.jp/vol_issue/nels/AA11989749/ISS0000426576_ja.html
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Example of ADF Test

. gen time=_n

. tsset time
time variable: time, 1 to 516

delta: 1 unit

. gen sexpend=expend-l12.expend
(12 missing values generated)

. corrgram sexpend

-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]

-------------------------------------------------------------------------------
1 0.7177 0.7184 261.14 0.0000 |----- |-----
2 0.7036 0.3895 512.6 0.0000 |----- |---
3 0.7031 0.2817 764.23 0.0000 |----- |--
4 0.6366 0.0456 970.94 0.0000 |----- |
5 0.6413 0.1116 1181.1 0.0000 |----- |
6 0.6267 0.0815 1382.2 0.0000 |----- |
7 0.6208 0.0972 1580 0.0000 |---- |
8 0.6384 0.1286 1789.5 0.0000 |----- |-
9 0.5926 -0.0205 1970.5 0.0000 |---- |
10 0.5847 -0.0014 2146.9 0.0000 |---- |
11 0.5658 -0.0185 2312.6 0.0000 |---- |
12 0.4529 -0.2570 2418.9 0.0000 |--- --|
13 0.5601 0.2318 2581.8 0.0000 |---- |-
14 0.5393 0.1095 2733.2 0.0000 |---- |
15 0.5277 0.0850 2878.4 0.0000 |---- |
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. varsoc d.sexpend, exo(l.sexpend) maxlag(25)

Selection-order criteria
Sample: 39 - 516 Number of obs = 478

+---------------------------------------------------------------------------+
|lag | LL LR df p FPE AIC HQIC SBIC |
|----+----------------------------------------------------------------------|
| 0 | -4917.7 5.1e+07 20.5845 20.5914 20.6019 |
| 1 | -4878.69 78.013 1 0.000 4.3e+07 20.4255 20.4358 20.4516 |
| 2 | -4858.95 39.481 1 0.000 4.0e+07 20.3471 20.3608 20.382 |
| 3 | -4858.46 .97673 1 0.323 4.0e+07 20.3492 20.3664 20.3928 |
| 4 | -4855.44 6.0461 1 0.014 4.0e+07 20.3407 20.3613 20.3931 |
| 5 | -4853.84 3.1904 1 0.074 4.0e+07 20.3383 20.3623 20.3993 |
| 6 | -4851.58 4.5304 1 0.033 4.0e+07 20.333 20.3604 20.4027 |
| 7 | -4847.61 7.942 1 0.005 3.9e+07 20.3205 20.3514 20.399 |
| 8 | -4847.51 .20154 1 0.653 3.9e+07 20.3243 20.3586 20.4115 |
| 9 | -4847.51 .00096 1 0.975 3.9e+07 20.3285 20.3662 20.4244 |
| 10 | -4847.43 .16024 1 0.689 4.0e+07 20.3323 20.3735 20.437 |
| 11 | -4831.38 32.094 1 0.000 3.7e+07 20.2694 20.3139 20.3828 |
| 12 | -4818.46 25.834 1 0.000 3.5e+07 20.2195 20.2675 20.3416* |
| 13 | -4815.64 5.6341 1 0.018 3.5e+07 20.2119 20.2633 20.3427 |
| 14 | -4813.98 3.321 1 0.068 3.5e+07 20.2091 20.264 20.3487 |
| 15 | -4813.38 1.2007 1 0.273 3.5e+07 20.2108 20.2691 20.3591 |
| 16 | -4810.57 5.6184 1 0.018 3.5e+07 20.2032 20.265 20.3603 |
| 17 | -4808.7 3.7539 1 0.053 3.5e+07 20.1996 20.2647 20.3653 |
| 18 | -4806.12 5.1557 1 0.023 3.4e+07 20.193 20.2616 20.3674 |
| 19 | -4804.6 3.0319 1 0.082 3.4e+07 20.1908 20.2628 20.374 |
| 20 | -4804.6 2.7e-05 1 0.996 3.5e+07 20.195 20.2704 20.3869 |
| 21 | -4797.33 14.542 1 0.000 3.4e+07 20.1688 20.2476 20.3694 |
| 22 | -4794.2 6.2571* 1 0.012 3.3e+07* 20.1598* 20.2422* 20.3692 |
| 23 | -4793.42 1.5626 1 0.211 3.3e+07 20.1608 20.2465 20.3788 |
| 24 | -4792.85 1.1533 1 0.283 3.3e+07 20.1625 20.2517 20.3893 |
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| 25 | -4792.78 .13518 1 0.713 3.4e+07 20.1664 20.259 20.402 |
+---------------------------------------------------------------------------+
Endogenous: D.sexpend
Exogenous: L.sexpend _cons

. dfuller sexpend, lags(22)

Augmented Dickey-Fuller test for unit root Number of obs = 481

---------- Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value
------------------------------------------------------------------------------
Z(t) -1.627 -3.442 -2.871 -2.570

------------------------------------------------------------------------------
MacKinnon approximate p-value for Z(t) = 0.4689

. dfuller sexpend, lags(12)

Augmented Dickey-Fuller test for unit root Number of obs = 491

---------- Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value
------------------------------------------------------------------------------
Z(t) -2.399 -3.441 -2.870 -2.570

------------------------------------------------------------------------------
MacKinnon approximate p-value for Z(t) = 0.1420

=⇒ Unit root is detected.
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8.4 Cointegration (共和分)

1. For a scalar yt, when ∆yt = yt − yt−1 is a white noise (i.e., iid), we write ∆yt ∼ I(1).

2. Definition of Cointegration:

Suppose that each series in a g × 1 vector yt is I(1), i.e., each series has unit root, and that a linear

combination of each series (i.e, a′yt for a nonzero vector a) is I(0), i.e., stationary.

Then, we say that yt has a cointegration.

a is called the cointegrating vector.

3. Example:

Suppose that yt = (y1,t, y2,t)′ is the following vector autoregressive process:

y1,t = φ1y2,t + ε1,t,

y2,t = y2,t−1 + ε2,t.

Then,

∆y1,t = φ1ε2,t + ε1,t − ε1,t−1, (MA(1) process),
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∆y2,t = ε2,t,

where both y1,t and y2,t are I(1) processes.

The linear combination y1,t − φ1y2,t is I(0).

In this case, we say that yt = (y1,t, y2,t)′ is cointegrated with a = (1, −φ1).

a = (1, −φ1) is called the cointegrating vector, which is not unique.

Therefore, the first element of a is set to be one.

8.5 Spurious Regression (見せかけ回帰)

1. Suppose that yt ∼ I(1) and xt ∼ I(1).

For the regression model yt = xtβ+ ut, OLS does not work well if we do not have the β which satisfies

ut ∼ I(0).

=⇒ Spurious regression (見せかけ回帰)

2. Suppose that yt ∼ I(1), yt is a g × 1 vector and yt =

( y1,t

y2,t

)
.

y2,t is a k × 1 vector, where k = g − 1.
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Consider the following regression model:

y1,t = α + γ′y2,t + ut, t = 1, 2, · · · ,T.

OLSE is given by: (
α̂

γ̂

)
=

( T
∑

y′2,t∑
y2,t

∑
y2,ty′2,t

)−1 ( ∑
y1,t

∑
y1,ty2,t

)
.

Next, consider testing the null hypothesis H0 : Rγ = r, where R is a m × k matrix (m ≤ k) and r is a

m × 1 vector.

The F statistic, denoted by FT , is given by:

FT =
1
m

(Rγ̂ − r)′
s2

T ( 0 R )
( T

∑
y′2,t∑

y2,t
∑

y2,ty′2,t

)−1 ( 0

R′

)
−1

(Rγ̂ − r),

where

s2
T =

1
T − g

T∑

t=1

(y1,t − α̂ − γ̂′y2,t)2.

When we have the γ such that y1,t − γy2,t is stationary, OLSE of γ, i.e., γ̂, is not statistically equal to

zero.

When the sample size T is large enough, H0 is rejected by the F test.
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3. Phillips, P.C.B. (1986) “Understanding Spurious Regressions in Econometrics,” Journal of Economet-

rics, Vol.33, pp.95 – 131.

Consider a g × 1 vector yt whose first difference is described by:

∆yt = Ψ(L)εt =

∞∑

s=0

Ψsεt−s,

for εt an i.i.d. g × 1 vector with mean zero , variance E(εtε
′
t ) = PP′, and finite fourth moments and

where {sΨs}∞s=0 is absolutely summable.

Let k = g − 1 and Λ = Ψ(1)P.

Partition yt as yt =

( y1,t

y2,t

)
and ΛΛ′ as ΛΛ′ =

(
Σ11 Σ′21

Σ21 Σ22

)
, where y1,t and Σ11 are scalars, y2,t and Σ21

are k × 1 vectors, and Σ22 is a k × k matrix.

Suppose that ΛΛ′ is nonsingular,and define σ∗21 = Σ11 − Σ′21Σ−1
22 Σ21.

Let L22 denote the Cholesky factor of Σ−1
22 , i.e., L22 is the lower triangular matrix satisfying Σ−1

22 =

L22L′22.

Then, (a) – (c) hold.
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(a) OLSEs of α and γ in the regression model y1,t = α + γ′y2,t + ut, denoted by α̂T and γ̂T , are

characterized by: ( T−1/2α̂T

γ̂T − Σ−1
22 Σ21

)
−→

(
σ∗1h1

σ∗1L22h2

)
,

where
( h1

h2

)
=

( 1
∫ 1

0 W∗
2 (r)′dr

∫ 1
0 W∗2 (r)dr

∫ 1
0 W∗2 (r)W∗

2 (r)′dr

)−1 ( ∫ 1
0 W∗1 (r)dr

∫ 1
0 W∗2 (r)W∗

1 (r)dr

)
.

W∗
1 (r) and W∗2 (r) denote scalar and g-dimensional standard Brownian motions, and W∗1 (r) is

independent of W∗
2 (r).

(b) The sum of squared residuals, denoted by RSST =
∑T

t=1 û2
t , satisfies

T−2RSST −→ σ∗21 H,

where H =
∫ 1

0 (W∗
1 (r))2dr −


( ∫ 1

0 W∗1 (r)dr
∫ 1

0 W∗2 (r)W∗1 (r)dr

)′ ( h1

h2

)
−1

.

(c) The FT test satisfies:

T−1FT −→ 1
m

(σ∗1R∗h2 − r∗)′

×
σ∗21 H ( 0 R∗ )

( 1
∫ 1

0 W∗2 (r)′dr
∫ 1

0 W∗
2 (r)dr

∫ 1
0 W∗2 (r)W∗2 (r)′dr

)−1

( 0 R∗ )′

−1
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×(σ∗1R∗h2 − r∗),

where R∗ = RL22 and r∗ = r − RΣ−1
22 Σ21.

Summary: Spurious regression (見せかけの回帰)

Consider the regression model: y1.t = α + y2,tγ + ut for t = 1, 2, · · · ,T
and yt ∼ I(1) for yt = (y1,t, y2,t)′.

(a) indicates that OLSE γ̂T is not consistent.

(b) indicates that s2
T =

1
T − g

T∑

t=1

û2
t diverges.

(c) indicates that FT diverges.

=⇒ It seems that the coefficients are statistically significant, based on the conventional t statistics.
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4. Resolution for Spurious Regression:

Suppose that y1,t = α + γ′y2,t + ut is a spurious regression.

(1) Estimate y1,t = α + γ′y2,t + φy1,t−1 + δy2,t−1 + ut.

Then, γ̂T is
√

T -consistent, and the t test statistic goes to the standard normal distribution under

H0 : γ = 0.

(2) Estimate ∆y1,t = α + γ′∆y2,t + ut. Then, α̂T and β̂T are
√

T -consistent, and the t test and F test

make sense.

(3) Estimate y1,t = α + γ′y2,t + ut by the Cochrane-Orcutt method, assuming that ut is the first-order

serially correlated error.

Usually, choose (2).

However, there are two exceptions.

(i) The true value of φ is not one, i.e., less than one.
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(ii) y1,t and y2,t are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

5. Cointegrating Vector:

Suppose that each element of yt is I(1) and that a′yt is I(0).

a is called a cointegrating vector (共和分ベクトル), which is not unique.

Set zt = a′yt, where zt is scalar, and a and yt are g × 1 vectors.

For zt ∼ I(0) (i.e., stationary)，

T−1
T∑

t=1

z2
t = T−1

T∑

t=1

(a′yt)2 −→ E(z2
t ).

For zt ∼ I(1) (i.e., nonstationary, i.e., a is not a cointegrating vector),

T−2
T∑

t=1

(a′yt)2 −→ λ2
∫ 1

0
(W(r))2 dr,

where W(r) denotes a standard Brownian motion and λ2 indicates variance of (1 − L)zt.
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If a is not a cointegrating vector, T−1 ∑T
t=1 z2

t diverges.

=⇒We can obtain a consistent estimate of a cointegrating vector by minimizing
∑T

t=1 z2
t with respect

to a, where a normalization condition on a has to be imposed.

The estimator of the a including the normalization condition is super-consistent (T -consistent).

● Stock, J.H. (1987) “Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors,”

Econometrica, Vol.55, pp.1035 – 1056.

Proposition:

Let y1,t be a scalar, y2,t be a k × 1 vector, and (y1,t, y′2,t)
′ be a g × 1 vector, where g = k + 1.

Consider the following model:

y1,t = α + γ′y2,t + z∗t ,

∆y2,t = u2,t,

( z∗t

u2,t

)
= Ψ∗(L)εt,
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εt is a g × 1 i.i.d. vector with E(εt) = 0 and E(εtε
′
t ) = PP′.

OLSE is given by:
(
α̂

γ̂

)
=

( T
∑

y′2,t∑
y2,t

∑
y2,ty′2,t

)−1 ( ∑
y1,t

∑
y1,ty2,t

)
.

Define λ∗1, which is a g × 1 vector, and Λ∗2, which is a k × g matrix, as follows:

Ψ∗(1) P =

(
λ∗1
′

Λ∗2

)
.

Then, we have the following results:

( T 1/2(α̂ − α)

T (γ̂ − γ)

)
−→


1

(
Λ∗2

∫
W(r)dr

)′

Λ∗2

∫
W(r)dr Λ∗2

(∫
(W(r)) (W(r))′ dr

)
Λ∗2
′



−1 ( h1

h2

)
,

where
( h1

h2

)
=


λ∗1
′W(1)

Λ∗2

(∫
W(r) (dW(r))′

)
λ∗1 +

∞∑

τ=0

E(u2,tz∗t+τ)

.

W(r) denotes a g-dimensional standard Brownian motion.

1) OLSE of the cointegrating vector is consistent even though ut is serially correlated.

2) The consistency of OLSE implies that T−1 ∑
û2

t −→ σ2.

3) Because T−1 ∑
(y1,t − y1)2 goes to infinity, a coefficient of determination, R2, goes to one.
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8.6 Testing Cointegration
8.6.1 Engle-Granger Test

yt ∼ I(1)

y1,t = α + γ′y2,t + ut

• ut ∼ I(0) =⇒ Cointegration

• ut ∼ I(1) =⇒ Spurious Regression

Estimate y1,t = α + γ′y2,t + ut by OLS, and obtain ût.

Estimate ût = ρût−1 + δ1∆ût−1 + δ2∆ût−2 + · · · + δp−1∆ût−p+1 + et by OLS.

ADF Test:

• H0 : ρ = 1 (Sprious Regression)

• H1 : ρ < 1 (Cointegration)

=⇒ Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Hansen (1992).
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Asymmptotic Distribution of Residual-Based ADF Test for Cointegration

# of Refressors, (a) Regressors have no drift (b) Some regressors have drift

excluding constant 1% 2.5% 5% 10% 1% 2.5% 5% 10%

1 −3.96 −3.64 −3.37 −3.07 −3.96 −3.67 −3.41 −3.13

2 −4.31 −4.02 −3.77 −3.45 −4.36 −4.07 −3.80 −3.52

3 −4.73 −4.37 −4.11 −3.83 −4.65 −4.39 −4.16 −3.84

4 −5.07 −4.71 −4.45 −4.16 −5.04 −4.77 −4.49 −4.20

5 −5.28 −4.98 −4.71 −4.43 −5.36 −5.02 −4.74 −4.46
J.D. Hamilton (1994), Time Series Analysis, p.766.
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