Moreover, we consider the following:

$$\frac{1}{\sqrt{T}\sigma}y_{t'} = \frac{1}{\sqrt{T}\sigma}(\epsilon_1 + \epsilon_2 + \cdots + \epsilon_{t'}) \longrightarrow N(0, r') \equiv W(r').$$

For t' > t, we have the following:

$$\frac{1}{\sqrt{T}\sigma}y_{t'} = \frac{1}{\sqrt{T}\sigma}(\epsilon_1 + \cdots + \epsilon_t + \epsilon_{t+1} + \cdots + \epsilon_{t'}) \longrightarrow N(0, r') \equiv W(r')$$

$$= \frac{1}{\sqrt{T}\sigma}y_t + \frac{1}{\sqrt{T}\sigma}(\epsilon_{t+1} + \cdots + \epsilon_{t'}).$$

Therefore, we have

$$\frac{1}{\sqrt{T}\sigma}y_{t'} - \frac{1}{\sqrt{T}\sigma}y_t = \frac{1}{\sqrt{T}\sigma}(\epsilon_{t+1} + \cdots + \epsilon_{t'}) \longrightarrow N(0, r' - r) \equiv W(r') - W(r).$$

That is, W(r) is independent of W(r') - W(r) for r' > r.

Moreover, note as follows:

$$\frac{1}{T\sqrt{T}\sigma}\sum_{t=1}^{T}y_{t} = \frac{1}{T}\sum_{t=1}^{T}\left(\frac{y_{t}}{\sqrt{T}\sigma}\right) \longrightarrow \int_{0}^{1}W(r)\mathrm{d}r$$

where $\frac{1}{T}$ and $\sum_{i=1}^{T}$ are replaced by dr and \int_{0}^{1} as T goes to infinity.

We devide the time interval (0, 1) into T time intervals $\left(\frac{t}{T}, \frac{t+1}{T}\right)$.

That is, time interval (1, T) is transformed into (0, 1).

(*) We know that
$$\frac{y_t}{\sqrt{T}\sigma} \longrightarrow W(r)$$
 as $\frac{t}{T} \longrightarrow r$.

Summary: Properties of W(r) for 0 < r < 1:

- 1. $W(r) \equiv N(0, r) \implies W(r)$ is a random variable.
- 2. $W(1) \equiv N(0,1)$
- 3. $W(1)^2 \equiv \chi^2(1)$ \Longrightarrow Remember that $Z^2 \sim \chi^2(1)$ when $Z \sim N(0, 1)$.
- 4. W(r) is independent of W(r') W(r) for r < r'.
- 5. $W(r_4) W(r_3)$ is independent of $W(r_2) W(r_1)$ for $0 \le r_1 < r_2 < r_3 < r_4 \le 1$.
 - \implies The interval between r_4 and r_3 is not overlapped with the interval between r_2 and r_1 .

• True Model $y_t = y_{t-1} + \epsilon_t$ vs Estimated Model $y_t = \phi y_{t-1} + \epsilon_t$: Under $\phi = 1$, we estimate ϕ in the regression model:

$$y_t = \phi y_{t-1} + \epsilon_t$$

OLS of ϕ is:

$$\hat{\phi} = \frac{\sum_{t=1}^{T} y_{t-1} y_t}{\sum_{t=1}^{T} y_{t-1}^2} = \phi + \frac{\sum_{t=1}^{T} y_{t-1} \epsilon_t}{\sum_{t=1}^{T} y_{t-1}^2}$$

As mentioned aove, the numerator is related to:

$$\frac{1}{\sigma^2 T} \sum_{t=1}^{T} y_{t-1} \epsilon_t = \frac{1}{2} \left(\frac{y_T}{\sigma \sqrt{T}} \right)^2 - \frac{1}{2\sigma^2} \frac{1}{T} \sum_{t=1}^{T} \epsilon_t^2 \longrightarrow \frac{1}{2} W(1)^2 - \frac{1}{2}$$

which is rewritten by using the Brownian motion W(1).

The denominator is:

$$\frac{1}{\sigma^2 T^2} \sum_{t=1}^{T} y_{t-1}^2 \approx \frac{1}{\sigma^2 T^2} \sum_{t=1}^{T} y_t^2 = \frac{1}{T} \sum_{t=1}^{T} \left(\frac{y_t}{\sigma \sqrt{T}} \right)^2 \longrightarrow \int_0^1 W(r)^2 dr$$

where $\frac{1}{T} \longrightarrow dr$ and $\frac{y_t}{T\sqrt{T}} \longrightarrow W(r)$ for $\frac{t}{T} \longrightarrow r$.

Thus, under $\phi = 1$, $T(\hat{\phi} - \phi)$ is asymptotically distributed as follows:

$$T(\hat{\phi} - \phi) = T(\hat{\phi} - 1) = \frac{\frac{1}{\sigma^2 T} \sum_{t=1}^{T} y_{t-1} \epsilon_t}{\frac{1}{\sigma^2 T^2} \sum_{t=1}^{T} y_{t-1}^2} \longrightarrow \frac{\frac{1}{2} (W(1)^2 - 1)}{\int_0^1 W(r)^2 dr}$$

• t value:

In the regression model: $y_t - y_{t-1} \equiv \Delta y_t = \rho y_{t-1} + \epsilon_t$, OLSE of $\rho = \phi - 1$ is given by $\hat{\rho} = \hat{\phi} - 1$.

t value is $\frac{\hat{\rho}}{s_{\rho}} = \frac{\hat{\phi} - 1}{s_{\phi}}$, where s_{ρ} and s_{ϕ} denote the standard errors of $\hat{\rho}$ and $\hat{\phi}$.

Note that $s_{\rho} = s_{\phi}$ because of $V(\hat{\rho}) = V(\hat{\phi} - 1) = V(\hat{\phi})$.

The standard error of $\hat{\phi}$, denoted by s_{ϕ} , is given by: $s_{\phi}^2 = \frac{s^2}{\sum_{t=1}^T y_{t-1}^2}$, where $s^2 = \frac{1}{T} \sum_{t=1}^T (y_t - \hat{\phi} y_{t-1})^2$, called the standard error of regression.

$$s^{2} = \frac{1}{T} \sum_{t=1}^{T} (y_{t} - \hat{\phi}y_{t-1})^{2}$$

$$= \frac{1}{T} \sum_{t=1}^{T} (\epsilon_{t} - (\hat{\phi} - 1)y_{t-1})^{2}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \epsilon_{t}^{2} - 2\frac{1}{T} \frac{1}{T} (\hat{\phi} - 1) \sum_{t=1}^{T} y_{t-1} \epsilon_{t} + \frac{1}{T} (\hat{\phi} - 1)^{2} \sum_{t=1}^{T} y_{t-1}^{2}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \epsilon_{t}^{2} - 2\frac{\sigma^{2}}{T} \left[T(\hat{\phi} - 1) \right] \left[\frac{1}{T\sigma^{2}} \sum_{t=1}^{T} y_{t-1} \epsilon_{t} \right] + \frac{\sigma^{2}}{T} \left[T(\hat{\phi} - 1) \right]^{2} \left[\frac{1}{T^{2}\sigma^{2}} \sum_{t=1}^{T} y_{t-1}^{2} \right]$$

$$\longrightarrow \sigma^{2}.$$

The random variables in $[\cdot]$ converge in distribution..

Note that in the right hand side of the fourth line the second and third terms go to zero,

because we know the followings:

$$\frac{1}{T} \sum_{t=1}^{T} \epsilon_{t}^{2} \longrightarrow \sigma^{2}$$

$$T(\hat{\phi} - 1) \longrightarrow \frac{\frac{1}{2} (W(1)^{2} - 1)}{\int_{0}^{1} W(r)^{2} dr}$$

$$\frac{1}{T\sigma^{2}} \sum_{t=1}^{T} y_{t-1} \epsilon_{t} \longrightarrow \frac{1}{2} W(1)^{2} - \frac{1}{2}$$

$$\frac{1}{T^{2}\sigma^{2}} \sum_{t=1}^{T} y_{t}^{2} \longrightarrow \int_{0}^{1} W(r)^{2} dr$$

Therefore, from $s_{\phi}^2 = \frac{1}{T^2 \sigma^2} \frac{s^2}{\frac{1}{T^2 \sigma^2} \sum_{t=1}^T y_{t-1}^2}$, we obtain $T^2 s_{\phi}^2 \longrightarrow \left(\int_0^1 W(r)^2 dr \right)^{-1}$. t value is given by:

$$\frac{\hat{\phi} - 1}{s_{\phi}} = \frac{T(\hat{\phi} - 1)}{T s_{\phi}} \longrightarrow \frac{\frac{1}{2} (W(1)^{2} - 1) / \int_{0}^{1} W(r)^{2} dr}{\left(\int_{0}^{1} W(r)^{2} dr\right)^{-1/2}} = \frac{\frac{1}{2} (W(1)^{2} - 1)}{\left(\int_{0}^{1} W(r)^{2} dr\right)^{1/2}},$$

which is not a normal distribution.

• True Model $y_t = y_{t-1} + \epsilon_t$ vs Estimated Model $y_t = \alpha + \phi y_{t-1} + \epsilon_t$: Under $\alpha = 0$ and $\phi = 1$, we estimate α and ϕ in the regression model:

$$y_t = \alpha + \phi y_{t-1} + \epsilon_t$$

OLSEs of α and ϕ are:

$$\begin{pmatrix} \hat{\alpha} \\ \hat{\phi} \end{pmatrix} = \begin{pmatrix} T & \sum y_{t-1} \\ \sum y_{t-1} & \sum y_{t-1}^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum y_t \\ \sum y_{t-1} y_t \end{pmatrix} = \begin{pmatrix} \alpha \\ \phi \end{pmatrix} + \begin{pmatrix} T & \sum y_{t-1} \\ \sum y_{t-1} & \sum y_{t-1}^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum \epsilon_t \\ \sum y_{t-1} \epsilon_t \end{pmatrix}$$

$$= \begin{pmatrix} \alpha \\ \phi \end{pmatrix} + \frac{1}{T \sum y_{t-1}^2 - (\sum y_{t-1})^2} \begin{pmatrix} \sum y_{t-1}^2 & -\sum y_{t-1} \\ -\sum y_{t-1} & T \end{pmatrix} \begin{pmatrix} \sum \epsilon_t \\ \sum y_{t-1} \epsilon_t \end{pmatrix}$$

$$= \begin{pmatrix} \alpha \\ \phi \end{pmatrix} + \frac{1}{T \sum y_{t-1}^2 - (\sum y_{t-1})^2} \begin{pmatrix} (\sum y_{t-1}^2)(\sum \epsilon_t) - (\sum y_{t-1})(\sum y_{t-1} \epsilon_t) \\ -(\sum y_{t-1})(\sum \epsilon_t) + T(\sum y_{t-1} \epsilon_t) \end{pmatrix}$$

$$= \begin{pmatrix} \alpha \\ \phi \end{pmatrix} + \begin{pmatrix} \frac{(\sum y_t^2)(\frac{1}{T} \sum \epsilon_t) - \overline{y} \sum y_{t-1} \epsilon_t}{\sum y_t^2 - T \overline{y}^2} \\ \frac{-\overline{y} \sum \epsilon_t + \sum y_{t-1} \epsilon_t}{\sum y_t^2 - T \overline{y}^2} \end{pmatrix}$$

Note that $\frac{1}{T} \sum y_{t-1} \approx \frac{1}{T} \sum y_t = \overline{y}$ and $\sum y_{t-1}^2 \approx \sum y_t^2$ for large T.

In the true model, $\alpha = 0$ and $\phi = 1$.

$$\begin{pmatrix} \hat{\alpha} \\ \hat{\phi} - 1 \end{pmatrix} = \begin{pmatrix} \frac{(\sum y_t^2)(\frac{1}{T} \sum \epsilon_t) - \overline{y} \sum y_{t-1} \epsilon_t}{\sum y_t^2 - T \overline{y}^2} \\ \frac{-\overline{y} \sum \epsilon_t + \sum y_{t-1} \epsilon_t}{\sum y_t^2 - T \overline{y}^2} \end{pmatrix}$$

For each element of the vector, we consider each term in the numerator and denominator.

•
$$\sum_{t=1}^{T} y_{t-1} \epsilon_t$$
:

Taking the square of $y_t = y_{t-1} + \epsilon_t$ on both sides, we obtain: $y_t^2 = y_{t-1}^2 + y_{t-1}\epsilon_t + \epsilon_t^2$.

Then, we can rewrite as: $y_{t-1}\epsilon_t = \frac{1}{2}(y_t^2 - y_{t-1}^2 - \epsilon_t^2)$ for $y_0 = 0$.

Taking a sum from t = 1 to T, we have:

$$\sum_{t=1}^{T} y_{t-1} \epsilon_t = \frac{1}{2} \sum_{t=1}^{T} (y_t^2 - y_{t-1}^2 - \epsilon_t^2) = \frac{1}{2} y_T^2 - \frac{1}{2} \sum_{t=1}^{T} \epsilon_t^2,$$

which is divided by $T\sigma^2$ on both sides, then we obtain:

$$\frac{1}{T\sigma^2} \sum_{t=1}^{T} y_{t-1} \epsilon_t = \frac{1}{2} \left(\frac{y_T}{\sqrt{T}\sigma} \right)^2 - \frac{1}{2\sigma^2} \frac{1}{T} \sum_{t=1}^{T} \epsilon_t^2 \longrightarrow \frac{1}{2} W(1)^2 - \frac{1}{2}.$$

Note that
$$\frac{y_T}{\sqrt{T}\sigma} = W(1)$$
 and $\frac{1}{T} \sum_{t=1}^{T} \epsilon_t^2 \longrightarrow E(\epsilon_t^2) = \sigma^2$.

 \bullet \overline{y} :

Note that $\frac{1}{T} \sum_{t=0}^{T} y_t = \overline{y}$ and $\frac{1}{T} \sum_{t=0}^{T} y_{t-1} = \overline{y}$. We can rewrite \overline{y} as follows:

$$\bar{y} = \frac{1}{T} \sum_{t=1}^{T} y_t = \sqrt{T} \sigma \frac{1}{T} \sum_{t=1}^{T} \frac{y_t}{\sqrt{T} \sigma}$$

which is rewritten as:

$$\frac{\overline{y}}{\sqrt{T}\sigma} = \frac{1}{T} \sum_{t=1}^{T} \frac{y_t}{\sqrt{T}\sigma} \longrightarrow \int_0^1 W(r) dr$$

Note that $\frac{y_t}{\sqrt{T}\sigma} \longrightarrow W(r)$ as $\frac{t}{T} \longrightarrow r$.

•
$$\sum_{t=0}^{T} \epsilon_{t}$$
:

From
$$y_T = \sum_{t=1}^T \epsilon_t$$
, we have: $\frac{1}{\sqrt{T}\sigma} \sum_{t=1}^T \epsilon_t = \frac{y_T}{\sqrt{T}\sigma} = W(1)$.

$$\bullet \sum_{t=1}^{T} y_{t-1}^2:$$

From
$$\sum_{t=1}^{T} y_{t-1}^2 \approx \sum_{t=1}^{T} y_t^2$$
, we obtain: $\frac{1}{T} \sum_{t=1}^{T} \left(\frac{y_t}{\sqrt{T}\sigma} \right)^2 \longrightarrow \int_0^1 W(r)^2 dr$.

Note that
$$\frac{y_t}{\sqrt{T}\sigma} \longrightarrow W(r)$$
 as $\frac{t}{T} \longrightarrow r$.

Thus, $\hat{\phi} - 1 = \frac{\sum y_{t-1} \epsilon_t - \overline{y} \sum \epsilon_t}{\sum y_t^2 - T\overline{y}^2}$ is rerwitten as:

$$T(\hat{\phi} - 1) = \frac{\frac{1}{T\sigma^2} (\sum y_{t-1} \epsilon_t - \overline{y} \sum \epsilon_t)}{\frac{1}{T^2 \sigma^2} (\sum y_t^2 - T\overline{y}^2)} = \frac{\frac{1}{T\sigma^2} \sum y_{t-1} \epsilon_t - (\frac{\overline{y}}{\sqrt{T}\sigma}) (\frac{1}{\sqrt{T}\sigma} \sum \epsilon_t)}{\frac{1}{T} \sum (\frac{y_t}{\sqrt{T}\sigma})^2 - (\frac{\overline{y}}{\sqrt{T}\sigma})^2}$$

$$\longrightarrow \frac{\frac{1}{2} (W(1)^2 - 1) - W(1) \int_0^1 W(r) dr}{\int_0^1 W(r)^2 dr - (\int_0^1 W(r) dr)^2}$$

Remember that OLSE of α is given by:

$$\hat{\alpha} = \alpha + \frac{(\sum y_t^2)(\frac{1}{T} \sum \epsilon_t) - \bar{y} \sum y_{t-1} \epsilon_t}{\sum y_t^2 - T\bar{y}^2}$$

Under $\alpha = 0$, $\hat{\alpha}$ is rewritten as follows:

$$\sqrt{T}\hat{\alpha} = \frac{\sigma\left(\frac{1}{T}\sum\left(\frac{y_t}{\sqrt{T}\sigma}\right)^2\right)\left(\frac{1}{\sqrt{T}\sigma}\sum\epsilon_t\right) - \sigma\left(\frac{\overline{y}}{\sqrt{T}\sigma}\right)\left(\frac{1}{T\sigma^2}\sum y_{t-1}\epsilon_t\right)}{\frac{1}{T}\sum\left(\frac{y_t}{\sqrt{T}\sigma}\right)^2 - \left(\frac{\overline{y}}{\sqrt{T}\sigma}\right)^2}$$

$$\rightarrow \frac{\sigma W(1)\int_0^1 W(r)^2 dr - \sigma\frac{1}{2}(W(1)^2 - 1)\int_0^1 W(r) dr}{\int_0^1 W(r)^2 dr - \left(\int_0^1 W(r) dr\right)^2}$$

Thus, convergence speed of $\hat{\phi}$ is different from that of $\hat{\alpha}$.

Neither $\sqrt{T}\hat{\alpha}$ nor $T(\hat{\phi} - 1)$ are normal.

8.3 Serially Correlated Errors

Consider the case where the error term is serially correlated.

8.3.1 Augmented Dickey-Fuller (ADF) Test

Consider the following AR(p) model:

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t, \qquad \epsilon_t \sim iid(0, \sigma^2),$$

which is rewritten as: $\phi(L)y_t = \epsilon_t$.

When the above model has a unit root, we have $\phi(1) = 0$, i.e., $\phi_1 + \phi_2 + \cdots + \phi_p = 1$.

The above AR(p) model is written as:

$$y_t = \rho y_{t-1} + \delta_1 \Delta y_{t-1} + \delta_2 \Delta y_{t-2} + \dots + \delta_{p-1} \Delta y_{t-p+1} + \epsilon_t,$$

where
$$\rho = \phi_1 + \phi_2 + \cdots + \phi_p$$
 and $\delta_j = -(\phi_{j+1} + \phi_{j+2} + \cdots + \phi_p)$.

The null and alternative hypotheses are:

$$H_0: \rho = 1$$
 (Unit root),

$$H_1: \rho < 1$$
 (Stationary).

Use the *t* test, where we have the same asymptotic distributions.

We can utilize the same tables as before.

Choose *p* by AIC or SBIC.

Use
$$N(0, 1)$$
 to test H_0 : $\delta_j = 0$ against H_1 : $\delta_j \neq 0$ for $j = 1, 2, \dots, p - 1$.

Reference

Kurozumi (2008) "Economic Time Series Analysis and Unit Root Tests: Development and Perspective," *Japan Statistical Society*, Vol.38, Series J, No.1, pp.39 – 57.

Download the above paper from:

http://ci.nii.ac.jp/vol_issue/nels/AA11989749/ISS0000426576_ja.html

Example of ADF Test

. gen time=_n

. tsset time

time variable: time, 1 to 516 delta: 1 unit

. gen sexpend=expend-l12.expend
(12 missing values generated)

. corrgram sexpend

LAG	AC	PAC	Q	Prob>Q	-1 0 1 [Autocorrelation]	-1 0 1 [Partial Autocor]
1	0.7177	0.7184	261.14	0.0000		
2	0.7036	0.3895	512.6	0.0000		İ
3	0.7031	0.2817	764.23	0.0000		
4	0.6366	0.0456	970.94	0.0000		İ
5	0.6413	0.1116	1181.1	0.0000		1
6	0.6267	0.0815	1382.2	0.0000		1
7	0.6208	0.0972	1580	0.0000		1
8	0.6384	0.1286	1789.5	0.0000		ļ -
9	0.5926	-0.0205	1970.5	0.0000		ļ
10	0.5847	-0.0014	2146.9	0.0000	ļ	ļ
11	0.5658	-0.0185	2312.6	0.0000		ļ
12	0.4529	-0.2570	2418.9	0.0000		
13	0.5601	0.2318	2581.8	0.0000	ļ	ļ <i>-</i>
14	0.5393	0.1095	2733.2	0.0000		!
15	0.5277	0.0850	2878.4	0.0000		1

. varsoc d.sexpend, exo(1.sexpend) maxlag(25)

Selection-order criteria Sample: 39 - 516 Number of obs = 478								
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
+ 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	-4917.7 -4878.69 -4858.95 -4858.46 -4855.44 -4853.84 -4857.51 -4847.51 -4847.51 -4847.43 -4813.38 -4813.38 -4813.38 -4810.57 -4806.12 -4804.6 -4797.33 -4794.2 -4793.85	78.013 39.481 .97673 6.0461 3.1904 4.5304 7.942 .20154 .00096 .16024 32.094 25.834 5.6341 1.2007 5.6184 3.7539 5.1557 3.0319 2.7e-05 14.542 6.2571* 1.5626 1.1533		0.000 0.000 0.323 0.014 0.074 0.033 0.0653 0.975 0.689 0.000 0.018 0.068 0.273 0.018 0.023 0.023 0.023 0.023 0.023 0.023	5.1e+07 4.3e+07 4.0e+07 4.0e+07 4.0e+07 4.0e+07 4.0e+07 3.9e+07 3.9e+07 3.9e+07 3.5e+07 3.5e+07 3.5e+07 3.5e+07 3.5e+07 3.5e+07 3.5e+07 3.5e+07 3.4e+07 3.3e+07 3.3e+07	20.5845 20.4255 20.3471 20.3492 20.3407 20.3383 20.3205 20.3243 20.3285 20.3243 20.2694 20.2195 20.2119 20.2119 20.2108 20.2108 20.2108 20.195 20.1996 20.193 20.1688 20.1688 20.1608 20.1608	20.5914 20.4358 20.3608 20.3664 20.3613 20.3623 20.3604 20.3514 20.3586 20.3662 20.3735 20.2675 20.2633 20.264 20.2691 20.2691 20.2691 20.2691 20.2691 20.2647 20.2616 20.2628 20.2704 20.2476 20.2422* 20.24517	20.6019 20.4516 20.382 20.3928 20.3993 20.4027 20.437 20.4244 20.437 20.3828 20.3416* 20.3427 20.3487 20.3653 20.3653 20.3674 20.3692 20.3692 20.3692 20.3692 20.3693

25 -479	2.78 .13518	1 0.713	3.4e+07	20.1664	20.259	20.402			
Endogenous	: D.sexpend : L.sexpend _								
. dfuller sex	pend, lags(22)								
Augmented Dic	key-Fuller test	for unit	root	Number of	E obs =	481			
	Test Statistic	1% Crit Val	Interp ical ue	olated Dicke 5% Critical Value	ey-Fuller 10%	Critical Value			
Z(t)	-1.627	-3	.442	-2.87	 L	-2.570			
MacKinnon approximate p-value for Z(t) = 0.4689									
. dfuller sex	pend, lags(12)								
Augmented Dic	key-Fuller test	for unit	root	Number of	f obs =	491			
	Test Statistic 	1% Crit Val	Interp ical ue	olated Dicke 5% Critical Value	ey-Fuller L 10%	Critical Value			
Z(t)	-2.399	 -3	.441	-2.870)	-2.570			

 \implies Unit root is detected.

8.4 Cointegration (共和分)

1. For a scalar y_t , when $\Delta y_t = y_t - y_{t-1}$ is a white noise (i.e., iid), we write $\Delta y_t \sim I(1)$.

2. Definition of Cointegration:

Suppose that each series in a $g \times 1$ vector y_t is I(1), i.e., each series has unit root, and that a linear combination of each series (i.e., $a'y_t$ for a nonzero vector a) is I(0), i.e., stationary.

Then, we say that y_t has a cointegration.

a is called the cointegrating vector.

3. Example:

Suppose that $y_t = (y_{1,t}, y_{2,t})'$ is the following vector autoregressive process:

$$y_{1,t} = \phi_1 y_{2,t} + \epsilon_{1,t},$$

$$y_{2,t} = y_{2,t-1} + \epsilon_{2,t}.$$

Then,

$$\Delta y_{1,t} = \phi_1 \epsilon_{2,t} + \epsilon_{1,t} - \epsilon_{1,t-1},$$
 (MA(1) process),

$$\Delta y_{2,t} = \epsilon_{2,t},$$

where both $y_{1,t}$ and $y_{2,t}$ are I(1) processes.

The linear combination $y_{1,t} - \phi_1 y_{2,t}$ is I(0).

In this case, we say that $y_t = (y_{1,t}, y_{2,t})'$ is cointegrated with $a = (1, -\phi_1)$.

 $a = (1, -\phi_1)$ is called the cointegrating vector, which is not unique.

Therefore, the first element of a is set to be one.

8.5 Spurious Regression (見せかけ回帰)

1. Suppose that $y_t \sim I(1)$ and $x_t \sim I(1)$.

For the regression model $y_t = x_t \beta + u_t$, OLS does not work well if we do not have the β which satisfies $u_t \sim I(0)$.

- ⇒ Spurious regression (見せかけ回帰)
- 2. Suppose that $y_t \sim I(1)$, y_t is a $g \times 1$ vector and $y_t = \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}$. $y_{2,t}$ is a $k \times 1$ vector, where k = g 1.

Consider the following regression model:

$$y_{1,t} = \alpha + \gamma' y_{2,t} + u_t, \qquad t = 1, 2, \dots, T.$$

OLSE is given by:

$$\begin{pmatrix} \hat{\alpha} \\ \hat{\gamma} \end{pmatrix} = \begin{pmatrix} T & \sum y'_{2,t} \\ \sum y_{2,t} & \sum y_{2,t} y'_{2,t} \end{pmatrix}^{-1} \begin{pmatrix} \sum y_{1,t} \\ \sum y_{1,t} y_{2,t} \end{pmatrix}.$$

Next, consider testing the null hypothesis H_0 : $R\gamma = r$, where R is a $m \times k$ matrix $(m \le k)$ and r is a $m \times 1$ vector.

The F statistic, denoted by F_T , is given by:

$$F_{T} = \frac{1}{m} (R\hat{\gamma} - r)' \left(s_{T}^{2} (0 R) \begin{pmatrix} T & \sum y_{2,t}' \\ \sum y_{2,t} & \sum y_{2,t}y_{2,t}' \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ R' \end{pmatrix} \right)^{-1} (R\hat{\gamma} - r),$$

where

$$s_T^2 = \frac{1}{T - g} \sum_{t=1}^{T} (y_{1,t} - \hat{\alpha} - \hat{\gamma}' y_{2,t})^2.$$

When we have the γ such that $y_{1,t} - \gamma y_{2,t}$ is stationary, OLSE of γ , i.e., $\hat{\gamma}$, is not statistically equal to zero.

When the sample size T is large enough, H_0 is rejected by the F test.

3. Phillips, P.C.B. (1986) "Understanding Spurious Regressions in Econometrics," *Journal of Econometrics*, Vol.33, pp.95 – 131.

Consider a $g \times 1$ vector v_t whose first difference is described by:

$$\Delta y_t = \Psi(L)\epsilon_t = \sum_{s=0}^{\infty} \Psi_s \epsilon_{t-s},$$

for ϵ_t an i.i.d. $g \times 1$ vector with mean zero , variance $E(\epsilon_t \epsilon_t') = PP'$, and finite fourth moments and where $\{s\Psi_s\}_{s=0}^{\infty}$ is absolutely summable.

Let k = g - 1 and $\Lambda = \Psi(1)P$.

Partition y_t as $y_t = \begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}$ and $\Lambda\Lambda'$ as $\Lambda\Lambda' = \begin{pmatrix} \Sigma_{11} & \Sigma'_{21} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$, where $y_{1,t}$ and Σ_{11} are scalars, $y_{2,t}$ and Σ_{21} are $k \times 1$ vectors, and Σ_{22} is a $k \times k$ matrix.

Suppose that $\Lambda\Lambda'$ is nonsingular, and define $\sigma_1^{*2} = \Sigma_{11} - \Sigma'_{21}\Sigma_{22}^{-1}\Sigma_{21}$.

Let L_{22} denote the Cholesky factor of Σ_{22}^{-1} , i.e., L_{22} is the lower triangular matrix satisfying $\Sigma_{22}^{-1} = L_{22}L'_{22}$.

Then, (a) - (c) hold.

(a) OLSEs of α and γ in the regression model $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$, denoted by $\hat{\alpha}_T$ and $\hat{\gamma}_T$, are characterized by:

characterized by:
$$\begin{pmatrix} T^{-1/2}\hat{\alpha}_T \\ \hat{\gamma}_T - \Sigma_{22}^{-1}\Sigma_{21} \end{pmatrix} \longrightarrow \begin{pmatrix} \sigma_1^*h_1 \\ \sigma_1^*L_{22}h_2 \end{pmatrix},$$
 where
$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} 1 & \int_0^1 W_2^*(r)'dr \\ \int_0^1 W_2^*(r)W_1^*(r)'dr \end{pmatrix}^{-1} \begin{pmatrix} \int_0^1 W_1^*(r)dr \\ \int_0^1 W_2^*(r)W_1^*(r)'dr \end{pmatrix}.$$

 $W_1^*(r)$ and $W_2^*(r)$ denote scalar and g-dimensional standard Brownian motions, and $W_1^*(r)$ is independent of $W_2^*(r)$.

(b) The sum of squared residuals, denoted by RSS_T = $\sum_{t=1}^{T} \hat{u}_t^2$, satisfies

$$T^{-2}RSS_{T} \longrightarrow \sigma_{1}^{*2}H,$$
 where
$$H = \int_{0}^{1} (W_{1}^{*}(r))^{2} dr - \left(\left(\int_{0}^{1} W_{1}^{*}(r) dr \right)' \binom{h_{1}}{h_{2}} \right)^{-1}.$$

(c) The F_T test satisfies:

$$T^{-1}F_{T} \longrightarrow \frac{1}{m} (\sigma_{1}^{*}R^{*}h_{2} - r^{*})'$$

$$\times \left(\sigma_{1}^{*2}H(0 \quad R^{*}) \left(\begin{array}{cc} 1 & \int_{0}^{1} W_{2}^{*}(r)'dr \\ \int_{0}^{1} W_{2}^{*}(r)dr & \int_{0}^{1} W_{2}^{*}(r)W_{2}^{*}(r)'dr \end{array}\right)^{-1} (0 \quad R^{*})'\right)^{-1}$$

$$\times (\sigma_1^* R^* h_2 - r^*),$$

where $R^* = RL_{22}$ and $r^* = r - R\Sigma_{22}^{-1}\Sigma_{21}$.

Summary: Spurious regression (見せかけの回帰)

Consider the regression model: $y_{1,t} = \alpha + y_{2,t}\gamma + u_t$ for $t = 1, 2, \dots, T$

and
$$y_t \sim I(1)$$
 for $y_t = (y_{1,t}, y_{2,t})'$.

- (a) indicates that OLSE $\hat{\gamma}_T$ is not consistent.
- (b) indicates that $s_T^2 = \frac{1}{T g} \sum_{t=1}^{T} \hat{u}_t^2$ diverges.
- (c) indicates that F_T diverges.
- \implies It seems that the coefficients are statistically significant, based on the conventional t statistics.

4. Resolution for Spurious Regression:

Suppose that $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ is a spurious regression.

(1) Estimate
$$y_{1,t} = \alpha + \gamma' y_{2,t} + \phi y_{1,t-1} + \delta y_{2,t-1} + u_t$$
.

Then, $\hat{\gamma}_T$ is \sqrt{T} -consistent, and the t test statistic goes to the standard normal distribution under H_0 : $\gamma = 0$.

(2) Estimate $\Delta y_{1,t} = \alpha + \gamma' \Delta y_{2,t} + u_t$. Then, $\hat{\alpha}_T$ and $\hat{\beta}_T$ are \sqrt{T} -consistent, and the t test and F test make sense.

(3) Estimate $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ by the Cochrane-Orcutt method, assuming that u_t is the first-order serially correlated error.

Usually, choose (2).

However, there are two exceptions.

(i) The true value of ϕ is not one, i.e., less than one.

(ii) $y_{1,t}$ and $y_{2,t}$ are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

5. Cointegrating Vector:

Suppose that each element of y_t is I(1) and that $a'y_t$ is I(0).

a is called a **cointegrating vector** (共和分ベクトル), which is not unique.

Set $z_t = a'y_t$, where z_t is scalar, and a and y_t are $g \times 1$ vectors.

For $z_t \sim I(0)$ (i.e., stationary),

$$T^{-1} \sum_{t=1}^{T} z_t^2 = T^{-1} \sum_{t=1}^{T} (a' y_t)^2 \longrightarrow E(z_t^2).$$

For $z_t \sim I(1)$ (i.e., nonstationary, i.e., a is not a cointegrating vector),

$$T^{-2} \sum_{t=1}^{T} (a' y_t)^2 \longrightarrow \lambda^2 \int_0^1 (W(r))^2 dr,$$

where W(r) denotes a standard Brownian motion and λ^2 indicates variance of $(1 - L)z_t$.

If a is not a cointegrating vector, $T^{-1} \sum_{t=1}^{T} z_t^2$ diverges.

 \implies We can obtain a consistent estimate of a cointegrating vector by minimizing $\sum_{t=1}^{T} z_t^2$ with respect to a, where a normalization condition on a has to be imposed.

The estimator of the a including the normalization condition is super-consistent (T-consistent).

Stock, J.H. (1987) "Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors," *Econometrica*, Vol.55, pp.1035 – 1056.

Proposition:

Let $y_{1,t}$ be a scalar, $y_{2,t}$ be a $k \times 1$ vector, and $(y_{1,t}, y'_{2,t})'$ be a $g \times 1$ vector, where g = k + 1.

Consider the following model:

$$y_{1,t} = \alpha + \gamma' y_{2,t} + z_t^*,$$

$$\Delta y_{2,t} = u_{2,t},$$

$$\begin{pmatrix} z_t^* \\ u_{2,t} \end{pmatrix} = \Psi^*(L)\epsilon_t,$$

 ϵ_t is a $g \times 1$ i.i.d. vector with $E(\epsilon_t) = 0$ and $E(\epsilon_t \epsilon_t') = PP'$.

OLSE is given by:
$$\begin{pmatrix} \hat{\alpha} \\ \hat{\gamma} \end{pmatrix} = \begin{pmatrix} T & \sum y'_{2,t} \\ \sum y_{2,t} & \sum y_{2,t} y'_{2,t} \end{pmatrix}^{-1} \begin{pmatrix} \sum y_{1,t} \\ \sum y_{1,t} y_{2,t} \end{pmatrix}.$$

Define λ_1^* , which is a $g \times 1$ vector, and Λ_2^* , which is a $k \times g$ matrix, as follows:

$$\Psi^*(1) P = \begin{pmatrix} \lambda_1^{*\prime} \\ \Lambda_2^* \end{pmatrix}.$$

Then, we have the following results:

$$\begin{pmatrix} T^{1/2}(\hat{\alpha} - \alpha) \\ T(\hat{\gamma} - \gamma) \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & \left(\Lambda_2^* \int W(r) dr \right)' \\ \Lambda_2^* \int W(r) dr & \Lambda_2^* \left(\int (W(r)) (W(r))' dr \right) \Lambda_2^{*'} \end{pmatrix}^{-1} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix},$$
where
$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \lambda_1^* \int W(r) (dW(r))' dr \\ \Lambda_2^* \int W(r) (dW(r))' dr \\ \Lambda_1^* \int E(u_{2,t} z_{t+\tau}^*) dr \\ \end{pmatrix}.$$

W(r) denotes a g-dimensional standard Brownian motion.

- 1) OLSE of the cointegrating vector is consistent even though u_t is serially correlated.
- 2) The consistency of OLSE implies that $T^{-1} \sum \hat{u}_t^2 \longrightarrow \sigma^2$.
- 3) Because $T^{-1} \sum (y_{1,t} \bar{y}_1)^2$ goes to infinity, a coefficient of determination, R^2 , goes to one.

8.6 Testing Cointegration

8.6.1 Engle-Granger Test

$$y_t \sim I(1)$$

$$y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$$

- $u_t \sim I(0) \implies \text{Cointegration}$
- $u_t \sim I(1) \implies$ Spurious Regression

Estimate $y_{1,t} = \alpha + \gamma' y_{2,t} + u_t$ by OLS, and obtain \hat{u}_t .

Estimate $\hat{u}_t = \rho \hat{u}_{t-1} + \delta_1 \Delta \hat{u}_{t-1} + \delta_2 \Delta \hat{u}_{t-2} + \dots + \delta_{p-1} \Delta \hat{u}_{t-p+1} + e_t$ by OLS.

ADF Test:

- H_0 : $\rho = 1$ (Sprious Regression)
- H_1 : ρ < 1 (Cointegration)

\Longrightarrow Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Hansen (1992).

Asymmptotic Distribution of Residual-Based ADF Test for Cointegration

# of Refressors,	(a) Reg	ressors h	ave no dr	ift	(b) Some regressors have drift			
excluding constant	1%	2.5%	5%	10%	1%	2.5%	5%	10%
1	-3.96	-3.64	-3.37	-3.07	-3.96	-3.67	-3.41	-3.13
2	-4.31	-4.02	-3.77	-3.45	-4.36	-4.07	-3.80	-3.52
3	-4.73	-4.37	-4.11	-3.83	-4.65	-4.39	-4.16	-3.84
4	-5.07	-4.71	-4.45	-4.16	-5.04	-4.77	-4.49	-4.20
5	-5.28	-4.98	-4.71	-4.43	-5.36	-5.02	-4.74	-4.46

J.D. Hamilton (1994), Time Series Analysis, p.766.