Moreover, we consider the following:

1 1
Yy = (e +e+ -+ +¢) — N@O,r)=WE).
VTo ' To t
For ¢ > t, we have the following:
1 1 , )
\/To_y,r = \/70'(61 + - +6+e6q+ - ) — NGO, F¥)=W3GF)
1 1
= Vv + (€41 + - €).
\/TO' t \/TO' 1+ 1

Therefore, we have

1 1 1
y =
VTo VTo ' To
That is, W(r) is independent of W(r") — W(r) for ' > r.

yr = (€1 + -+ &) —> NO,7" —r)=W0F") - W().
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Moreover, note as follows:

1 _ l Vi N !
TWUZ%— T;( ﬁ(f) fo W(r)dr

T 1
1
where T and Z are replaced by dr and f as T goes to infinity.
t=1 0

t+1

t
We devide the time interval (0, 1) into 7 time intervals (7, T)

That is, time interval (1, 7T') is transformed into (0, 1).

Vi
To

(*) We know that

t
— W(r) as o — T
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Summary: Properties of W(r) for 0 < r < 1:

1. W) = NQO,r) = W(r) is a random variable.

2. W) = N, 1)
3. W()? = YA = Remember that Z> ~ y*(1) when Z ~ N(0, 1).
4. W(r) is independent of W(r") — W(r) forr < r'.

5. W(ry) — W(r3) is independent of W(r,) — W(r))forO <ry <ry <r;<ry <1.

— The interval between r, and r; is not overlapped with the

interval between r, and r;.
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e True Model y, = y,_; + ¢ vs Estimated Model y; = ¢y, + ¢: Under ¢ = 1, we

estimate ¢ in the regression model:

Vi=¢yi1t+ &

OLS of ¢ is:
& _ Zthl V-1t 4 Z[T:I Vi-1€
- T .2 - T .2
Z‘4t=1yz—1 Z‘4t=1yz—1
As mentioned aove, the numerator is related to:

T y 2 1 1 & 1 1
Z T z : 2 W(1)2

which is rewritten by using the Brownian motion W(1).

The denominator is:

T

1 ) 1 v, Iy
o272 Zyt—l ~ o272 Zyt :TZ

=1 t=1 t=1




1 t
where T — dr and — W(r) for T —r.

g

Thus, under ¢ = 1, T(¢ — ¢) is asymptotically distributed as follows:
—_ 1
O—ZT Zyt—let E(W(l)z _ 1)

T@-¢)=T¢-1) = 7 —
2
O-ZTZZ ytz_l f(; W(r)-dr

e ¢ value:
In the regression model: y,—y,_; = Ay, = py,.1+€&, OLSE of p = ¢—1 is given by p = 1.

b p—1 .
t value is L _ ¢—, where s, and s, denote the standard errors of p and ¢.
Sp S¢
Note that s, = s, because of V(p) = V(p-1) = V().

. 2 1+
The standard error of ¢, denoted by sy, is given by: si = ﬁ, where s* = T Z()’z -
=111 t=1
$y,-1)?, called the standard error of regression.
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1 « .
st = T Zl(yz — ¢y’
1=

T

== Gy
t=1
T
:% 63_2__(¢_ I)Z)’t 16 + _(¢_ 1)? Zy, 1
=1
I, 0% . 1 < ot TP M A
_ ?;e, -2% |G- 1)][m;yt_1e,] + Z[16 - D[ [ ;y,_l]
— o’

The random variables in H converge in distribution..

Note that in the right hand side of the fourth line the second and third terms go to zero,
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because we know the followings:

1 T
= ,; e — o’

T¢-1) —
1 werrdr

1 < ey ]
m;yz—lfz — ) (1) 3
2 2
> Y, —>fW(r)dr
T%0? pa 0
1 s

-1
Therefore, from s = TrE ST , we obtain T%s; —> ( fol W(r)zdr) .
7267 D=1 Vi1

t value is given by:

p-1_T@-1 _ HWar-1) i werdr  Y(way-1)

So Ts (fol W(r)2dr)_l/2 (fol W(r)zdr)l/z’
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which is not a normal distribution.

183



e True Model y;, = y;_; + ¢ vs Estimated Model y, = @ + ¢y,-1 + ¢: Undera =0

and ¢ = 1, we estimate « and ¢ in the regression model:
Vi=a+t oyt &

OLSEs of @ and ¢ are:

A RSl I o 9 X P B
¢/ \Zyr Ty, \Zyew) \¢) Ty Ty \Zye
_ a)+ 1 (Zy?_l —Zyt_l)( Y& )

o) TEY, —Eye)* -3y, T 2 V1€

a’) N 1 ((Z yf_l)(Z &) — (X Y1) yt—lft))
o) TEY, ~Cyve?\ -y )Ee) +T(Eye)
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0y ytz)(% 2E&) =YX V1€

:(a)+ Ly =Ty
¢ —52 & + Zyt—lft
>y -Ty

Note that + 3, y,-1 ~ + Xy, = yand Y, y* | ~ X y? for large T.
In the true model, @ = 0 and ¢ = 1.

0 y?)(% 2E&) =YX Vi-1&

( a )_ S =Ty
‘i_ 1 VO &+ 2 Vi16
S =Ty

For each element of the vector, we consider each term in the numerator and denominator.
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T
b E Yi-16€:
t=1

Taking the square of y, = y,_; + & on both sides, we obtain: y> = y* | + y_1& + €.
Then, we can rewrite as: y,_ € = %(\/f - ytz_ | = 6,2) for yo = 0.
Taking a sum from ¢ = 1 to 7', we have:
S _1 < 2 _ .2 1, 1 S 2
;yt—lft ) ;(yt — Vi —§)= EYT - E;EI’
which is divided by T'o? on both sides, then we obtain:
T

1 < Loyr 2 11, 1,1
7o 209 = 5 a8 Vg

=1

T

yr 1 2 2 2
= W(l)and = e — E(eg)=0".
TO' Tt:ZI t 3

Note that
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oy
1+ 1+
Note that T ; y, =y and T ; yi—1 =Y. We can rewrite y as follows:

T T
_ 12 — lz Vs
Tt:l t Tt:l NT o

which is rewritten as:

y 1 o Vi :
N Z = - fo W(r)dr

=1

N

Vi
To

Note that

t
— W(r) asf — .
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1 &
From Z)’, 1= Zy,, we obtain: — Z \/_O_ 2 f W(r)4dr.
t=1

Vi
To

Note that

t
— W(r) as . — T
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Z)’t 1€ — yZ €

Thus, ¢ -1 = is rerwitten as:
Z)’t
E E 1
T(q'\5 To.z(Zyt 16— €) TO'2 Vi-1€ — —0_)(__ § )
E 2 ¥\
T2 2( yt Ty ) E O- )

HW? - 1) = wa) ) Wrdr
[ werrdr - (f wedr)

Remember that OLSE of « is given by:

. CyHFY &) -V yei&
a=aq-+ -
Zyt _Ty

189



Under a = 0, @ is rewritten as follows:

o7 X j%j)( — zeo - () 2 re)

VT& =

2
T Z \/_ 0' x/_ 0')
W) [ Wr2dr - o k(W2 - 1) [ W(rdr

[ werrdr - (f werdr)

—

Thus, convergence speed of ¢ is different from that of @.

Neither VT@& nor T(¢ — 1) are normal.
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8.3 Serially Correlated Errors

Consider the case where the error term is serially correlated.

8.3.1 Augmented Dickey-Fuller (ADF) Test
Consider the following AR(p) model:
Vi =01yt doyio o+ Py, &, & ~ 11d(0, 0'2),

which is rewritten as: o(L)y; = €.
When the above model has a unit root, we have ¢(1) = 0, 1.e.,¢; + g+ -+ ¢, = 1.

The above AR(p) model is written as:
Vi =PVt + 014y + 62Ay 2 + -+ + +0p1AY1-pi1 + &,

wherep=¢1 +¢dr+---+d,and 6; = —(dpju1 + Pjuo + - + &)).
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The null and alternative hypotheses are:
Hy : p =1 (Unit root),
H, : p < 1 (Stationary).
Use the 1 test, where we have the same asymptotic distributions.
We can utilize the same tables as before.
Choose p by AIC or SBIC.
Use N(0,1) to test Hy : 6; = 0 against H, : 6; # 0for j=1,2,---,p—1.
Reference
Kurozumi (2008) “Economic Time Series Analysis and Unit Root Tests: Development and
Perspective,” Japan Statistical Society, Vol.38, Series J, No.1, pp.39 — 57.

Download the above paper from:

http://ci.nii.ac.jp/vol_issue/nels/AA11989749/1SS0000426576_ja.html
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Example of ADF Test

. gen time=_n
. tsset time i :
time variable: time, 1 to 516
delta: 1 unit

. gen sexpend=expend-112.expend
(12 missing values generated)

. corrgram sexpend

-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
1 0.7177 0.7184 261.14 o6 - |----- | -==--
2 0.7036  0.3895 512.6 0.0000 | ----- -—-
3 0.7031 0.2817 764.23 0.6000 @ |----- --
4 0.6366 0.0456 970.94 0.0000 @ |-----
5 0.6413 0.1116 1181.1 ©0.60000 = |-----
6 0.6267 0.0815 1382.2 0.0000 = |-----
7 0.6208 0.0972 1580 0.0000 -———-
8 0.6384 0.1286 1789.5 0.0000 = |----- -
9 0.5926 -0.0205 1970.5 0.0000 -——-
10 0.5847 -0.0014 2146.9 0.0000 ———-
11 0.5658 -0.0185 2312.6 0.0000 -———-
12 0.4529 -0.2570 2418.9 0.0000 -—- --
13 0.5601 0.2318 2581.8 0.0000 -———- -
14 0.5393 0.1095 2733.2 0.0000 -——-
15 0.5277 0.0850 2878.4 0.0000 ———-




. varsoc d.sexpend, exo(l.sexpend) maxlag(25)

Selection-order criteria

Sample: 39 - 516

-4792.85

OO

WWWWWWWWWWWWWWihWWWi i bbb bho
(%2}
o
+
(=]
~N

Number of obs

20
20
20
20
20
20

2

20
2
20
2
20

20.1598%*

20
20

.5845
.4255
.3471
.3492
. 3407
.3383
0.333
.3205
.3243
.3285
.3323
.2694
.2195
.2119
.2091
.2108
.2032
.1996
0.193
.1908
0.195
.1688

.1608
.1625

20.6019
20.4516
20.382
20.3928
20.3931
20.3993
20.4027
20.399
20.4115
20.4244
20.437
20.3828
20.3416*
20.3427
20.3487
20.3591
20.3603
20.3653
20.3674
20.374
20.3869
20.3694
20.3692
20.3788
20.3893




| 25 | -4792.78 .13518 1 0.713 3.4e+07 20.1664 20.259 20.402

Endogenous: D.sexpend
Exogenous: L.sexpend _cons

. dfuller sexpend, lags(22)

Augmented Dickey-Fuller test for unit root Number of obs = 481
—————————— Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z() -1.627 -3.442 -2.871 -2.570

MacKinnon approximate p-value for Z(t) = 0.4689

. dfuller sexpend, lags(12)

Augmented Dickey-Fuller test for unit root Number of obs = 491
—————————— Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -2.399 -3.441 -2.870 -2.570

MacKinnon approximate p-value for Z(t) = 0.1420

— Unit root is detected.
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8.4 Cointegration (L1 [ 1)

1. For a scalar y,, when Ay, = y, — y;—1 is a white noise (i.e., iid), we write Ay, ~ I(1).

2. Definition of Cointegration:

Suppose that each series in a g X 1 vector y, is I(1), i.e., each series has unit root, and that a linear

combination of each series (i.e, a’y; for a nonzero vector a) is 1(0), i.e., stationary.
Then, we say that y; has a cointegration.

a is called the cointegrating vector.

3. Example:

Suppose that y, = (y1,4, y2,)" is the following vector autoregressive process:

Vi = P1y2s + €14,

Y2u = Yo-1 T €.

Then,

Ay = dre2; + €1, — €121, (MA(1) process),
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8.5

Ayr; = &y,

where both y; ; and y,, are I(1) processes.

The linear combination y;; — ¢1y2, is 1(0).

In this case, we say thaty, = (y1,, y2,)’ is cointegrated with a = (1, —¢;).
a = (1, —¢y) is called the cointegrating vector, which is not unique.

Therefore, the first element of a is set to be one.

Spurious Regression ([J [J [0 [0 [ [0)

. Suppose that y, ~ I(1) and x, ~ I(1).

For the regression model y, = x,8+ u,, OLS does not work well if we do not have the 8 which satisfies
u; ~ 100).

— Spurious regression (U 0 OO0 0)

Y1t
Suppose that y, ~ I(1), y; is a g X 1 vector and y, = ( )

Y2t
Ya2ris a k X 1 vector, where k = g — 1.
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Consider the following regression model:

yl,t=a+7’y2,t+uzs t=12,---,T.

(e o) (o)
¥y XY ZYaa,) \XYiYas

Next, consider testing the null hypothesis Hy : Ry = r, where R is a m X k matrix (m < k) and r is a

OLSE is given by:

m X 1 vector.

The F statistic, denoted by Fr, is given by:

1 T 25, 1o
FT=—(R&—r>'[s%<o R)( » ) ( )] Ry = 1),
m Xyae Xyas,) \R

where
1 &
2 A ~r 2
S7 = —— —-a- .
T 2 ;()’l,z ¥y
When we have the y such that y; ; — yy,, is stationary, OLSE of v, i.e., ¥, is not statistically equal to
Zero.

When the sample size T is large enough, Hj is rejected by the F test.
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3. Phillips, P.C.B. (1986) “Understanding Spurious Regressions in Econometrics,” Journal of Economet-

rics, Vol.33, pp.95 — 131.

Consider a g X 1 vector y, whose first difference is described by:

Ay =¥(D)e = ) Wier,
s=0

for ¢ anii.d. g x 1 vector with mean zero , variance E(ee€/) = PP’, and finite fourth moments and

where {s¥} is absolutely summable.

Letk=g—-1and A = ¥Y(1)P.
2 Z:,21

Yis
Partition y, as y, = and AA’ as AN’ = ( ), where y;, and X, are scalars, y,, and |

Yor! ) % X
are k x 1 vectors, and 2, is a k X k matrix.

Suppose that AA’ is nonsingular,and define a-”{z =2 - 2’2122 2.

Let Ly, denote the Cholesky factor of 252', i.e., Ly, is the lower triangular matrix satisfying 252' =

LnL),.

Then, (a) — (c) hold.
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(a) OLSEs of @ and vy in the regression model y;; = @ + y'y,, + u;, denoted by &r and ¥y, are

( Tﬁl/zc’\lT ) ( O’Th] )
H k
Pr — 30501 o Lnh,
hl) ( 1 INAGL )1 ( o widr )

ml \fwiodr [ wiewieydr) \ [ wiewiedr

characterized by:

where (

Wi(r) and W;(r) denote scalar and g-dimensional standard Brownian motions, and Wj(r) is

independent of W}(r).

(b) The sum of squared residuals, denoted by RSS; = Z,T:1 ft,z, satisfies
T?RSS; — o}’H,

) wirdr ) (h1 ))1

h H= [ (W) —((
where b wierar I wiwidr) \n

(c) The Fr test satisfies:
1
T'Fr — —(0{Rhy— 1"
m

1 * ’ -
1 fo W (rydr )1 . R*),]

x|o*2H (0 R*)(
( ! Jwidr [ Wi OWrydr
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X(o{R hy — 1),

where R* = RLy, and r* = r — RZ) %,;.

Summary: Spurious regression (O 0 OO0 O0O)

Consider the regression model: y;, = @ + y2, ¥y + u, fort =1,2,---,T

and y, ~ I(1) for y, = (y1.1. y2.)"-

(a) indicates that OLSE #7 is not consistent.
1 &
(b) indicates that s2T = T_—g Z ﬁtz diverges.
=1

(c) indicates that F diverges.

= It seems that the coefficients are statistically significant, based on the conventional ¢ statistics.
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4. Resolution for Spurious Regression:
Suppose that y; ; = @ + y'y,, + u; is a spurious regression.

(1) Estimate y;;, = & +¥'ya; + @Y1 -1 + 0y2,-1 + Uy
Then, yr is \NT -consistent, and the 7 test statistic goes to the standard normal distribution under

H()Z ’}/:O

(2) Estimate Ay, = @ + y'Ays; + u,. Then, &7 and BT are VT -consistent, and the ¢ test and F test

make sense.

(3) Estimate y;, = a + ¥'y2; + u; by the Cochrane-Orcutt method, assuming that u, is the first-order

serially correlated error.

Usually, choose (2).
However, there are two exceptions.

(i) The true value of ¢ is not one, i.e., less than one.
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(ii) y1,r and y, are the cointegrated processes.

In these two cases, taking the first difference leads to the misspecified regression.

. Cointegrating Vector:
Suppose that each element of y, is /(1) and that @y, is 1(0).
a is called a cointegrating vector (O O O O O O O ), which is not unique.

Set z; = a’y;, where z; is scalar, and a and y, are g X 1 vectors.

For z; ~ 1(0) (i.e., stationary)[]

T T
T_l Zztz = T_I Z(a'yz)2 — E(th)
=1 =1
For z; ~ I(1) (i.e., nonstationary, i.e., a is not a cointegrating vector),
T 1
)@y — X f (W) dr,
=1 0

where W(r) denotes a standard Brownian motion and A2 indicates variance of (1 — L)z;.
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If a is not a cointegrating vector, 7~ . 72 diverges.

= We can obtain a consistent estimate of a cointegrating vector by minimizing Z,T=1 72 with respect

to a, where a normalization condition on a has to be imposed.

The estimator of the a including the normalization condition is super-consistent (7 -consistent).

e Stock, J.H. (1987) “Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors,”
Econometrica, Vol.55, pp.1035 — 1056.

Proposition:
Let y, be a scalar, y, be a k x 1 vector, and (y1,,y5,)" be a g X 1 vector, where g = k + 1.

Consider the following model:

Yig=a+yyy+2z, Z

( ) =¥ (D,
u

Ayr; = upy, 2.0
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€ is a g X 1 i.i.d. vector with E(e) = 0 and E(eg€;) = PP’.

A

. . a T Z y/2,[ ! Z yl,l
OLSE is given by: = .

¥ X2 XYaYs, ) \ XYy

Define A}, which is a g X 1 vector, and A3, which is a k X g matrix, as follows:
/l’f’
¥*(1) P = ( )
A
Then, we have the following results: ,
Tl/Z(a, _ (Y) 1 (A; fW(r)dr) -1 hl
(v )= (1)
A ) A;’

TG -) ’awmdr A;( (W) (WY dr by
4

()
A; ( f W(r) (dW(r))') 4+ Bz, ]
=0

W(r) denotes a g-dimensional standard Brownian motion.

h
where ( ):
)

1) OLSE of the cointegrating vector is consistent even though u; is serially correlated.
2) The consistency of OLSE implies that T~! 3\ & — o2,

3) Because T~! 3.(y1,, — ¥,)* goes to infinity, a coefficient of determination, R?, goes to one.
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8.6 Testing Cointegration
8.6.1 Engle-Granger Test

ye~I(1)
Yy =@ +Yyr +u
e u; ~ I(0) = Cointegration

e u, ~ I(1) = Spurious Regression
Estimate y;, = @ + y'y2, + u, by OLS, and obtain #,.
Estimate I’/\lt = pﬁt—l + (SlAﬁl_] + 52Aﬁl_2 + -+ 61,_1Aﬁl_p+1 + é; by OLS.

ADF Test:
e Hy : p =1 (Sprious Regression)

e H; : p < 1 (Cointegration)
— Engle-Granger Test

For example, see Engle and Granger (1987), Phillips and Ouliaris (1990) and Hansen (1992).
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Asymmptotic Distribution of Residual-Based ADF Test for Cointegration

# of Refressors, (a) Regressors have no drift (b) Some regressors have drift
excluding constant 1% 2.5% 5% 10% 1% 2.5% 5% 10%
1 -396 -3.64 -337 -307 | -396 -3.67 -341 -3.13

2 -431 -4.02 -3.77 -345| -436 -4.07 -3.80 -3.52
3 -4.73 437 -411 -383 | -4.65 -439 -416 -3.84
4 -5.07 -471 -445 -4.16| -5.04 477 -449 -4.20
5 =528 498 -471 -443 | =536 -5.02 -4.74 -4.46

J.D. Hamilton (1994), Time Series Analysis, p.766.
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