Econometrics II TA Session #9

Ryo Sakamoto

Jan 12, 2021

5 Time Series Analysis

- 5.1 Introduction
 - 1. Stationarity
 - 2. Ergodicity
 - 3. Auto-covariance Function
 - 4. Auto-correlation Function
 - 5. Sample mean
- 5.2 Autoregressive Model
 - 1. AR(p) Model
 - 2. Stationarity

- 6. Sample Auto-covariance
- 7. Correlogram
- 8. Lag Operator
- 9. Likelihood Function

• 3. Partial Autocorrelation Coefficient

- 1 5.1 Introduction
- 2 5.2 Autoregressive Model
- Appendix

1. Stationarity

Let y_1, \dots, y_T be time series data.

(a) Weak Stationarity:

$$\mathbb{E}(y_t) = \mu, \qquad \forall t \in \{1, \dots, T\},$$

$$\mathbb{E}[(y_t - \mu)(y_{t-\tau} - \mu)] = \gamma(\tau), \qquad \forall t \in \{1, \dots, T\} \text{ and } \tau = 0, 1, 2, \dots.$$

- Both of the first and second moments do not depend on time t.
- The second moment depends on time difference τ , not time itself.

1. Stationarity

(b) Strong Stationarity:

• Let $f(y_{t_1}, y_{t_2}, \cdots, y_{t_r})$ be the joint distribution of $y_{t_1}, y_{t_2}, \cdots, y_{t_r}$.

$$f(y_{t_1},y_{t_2},\cdots,y_{t_r})=f(y_{t_1+\tau},y_{t_2+\tau},\cdots,y_{t_r+\tau}), \quad \forall (t_1,\cdots,t_r)\in\mathbb{R}^r \text{ and } \forall \tau\in\mathbb{N}.$$

- e.g.) The probability that the weather of 12/1, 2, 3. 4 is (sunny, cloudy, rainy, sunny) is equal to the probability that the weather of 12/4, 5, 6, 7 is (sunny, cloudy, rainy, sunny).
- All the moments are same for all τ .

2. Ergodicity

- As time difference between two data is large, the two data become independent.
- ullet y_1,\cdots,y_T is said to be **ergodic in mean** when \overline{y} converges in probability to $\mathbb{E}(y_t)$, i.e.,

$$\frac{1}{T}\sum_{t=1}^T y_t \overset{\mathbb{P}}{\to} \mathbb{E}(y_t), \text{ as } T \to \infty.$$

Roughly speaking, it is a time series version of the Law of Large Numbers.

3. Auto-covariance Function

• The auto-covariance of y_t and $y_{t-\tau}$ is

$$\mathbb{E}[(y_t - \mu)(y_{t-\tau} - \mu)] = \gamma(\tau), \quad \tau = 0, 1, 2, \cdots.$$

• It has a property of symmetricity:

$$\gamma(\tau) = \gamma(-\tau),$$

where

$$\gamma(-\tau) = \mathbb{E}[(y_t - \mu)(y_{t+\tau} - \mu)].$$

4. Auto-correlation Function

• The auto-correlation is given by

$$\rho(\tau) = \frac{\mathbb{E}[(y_t - \mu)(y_{t-\tau} - \mu)]}{\sqrt{Var(y_t)}\sqrt{Var(y_{t-\tau})}} = \frac{\gamma(\tau)}{\gamma(0)}.$$

• Note that for all $t \in \{1, \dots, T\}$,

$$\gamma(0) = \mathbb{E}[(y_t - \mu)(y_t - \mu)]$$
$$= \mathbb{E}[(y_t - \mu)^2]$$
$$= Var(y_t).$$

5. Sample Mean

• The sample mean is give by

$$\widehat{\mu} = \frac{1}{T} \sum_{t=1}^{T} y_t.$$

ullet Note that $\widehat{\mu}$ is a consistent estimator of y_t if the sample has a property of ergodicity.

6. Sample Auto-covariance

• The sample auto-covariance is given by

$$\widehat{\gamma}(\tau) = \frac{1}{T} \sum_{t=1}^{T} (y_t - \widehat{\mu})(y_{t-\tau} - \widehat{\mu}).$$

• This is the empirical counterpart of the auto-covarince function:

$$\gamma(\tau) = \mathbb{E}[(y_t - \boldsymbol{\mu})(y_{t-\tau} - \boldsymbol{\mu})].$$

7. Correlogram

• The correlogram (sample auto-correlation) is given by

$$\widehat{\rho}(\tau) = \frac{\widehat{\gamma}(\tau)}{\widehat{\gamma}(0)} = \frac{\frac{1}{T} \sum_{t=1}^{T} (y_t - \widehat{\mu})(y_{t-\tau} - \widehat{\mu})}{\frac{1}{T} \sum_{t=1}^{T} (y_t - \widehat{\mu})(y_t - \widehat{\mu})}.$$

• This is the empirical counterpart of the auto-correlation function:

$$\rho(\tau) = \frac{\gamma(\tau)}{\gamma(0)} = \frac{\mathbb{E}[(y_t - \mu)(y_{t-\tau} - \mu)]}{\sqrt{Var(y_t)}\sqrt{Var(y_{t-\tau})}}.$$

8. Lag Operator

• The lag operator L^{τ} is used for taking a lag of τ periods:

$$L^{\tau} y_t = y_{t-\tau}, \quad \tau = 1, 2, \cdots.$$

9. Likelihood Function - Innovation Form

• Using the Bayes' rule, we have the joint density of y_1, \dots, y_T as follows

$$f(y_{1}, \dots, y_{T}) = f(y_{T}|y_{T-1}, \dots, y_{1}) f(y_{T-1}, \dots, y_{1})$$

$$= f(y_{T}|y_{T-1}, \dots, y_{1}) f(y_{T-1}|y_{T-2}, \dots, y_{1}) f(y_{T-2}, \dots, y_{1})$$

$$\vdots$$

$$= f(y_{T}|y_{T-1}, \dots, y_{1}) f(y_{T-1}|y_{T-2}, \dots, y_{1}) \dots f(y_{2}|y_{1}) f(y_{1})$$

$$= f(y_{1}) \prod_{t=2}^{T} f(y_{t}|y_{t-1}, \dots, y_{1}).$$

9. Likelihood Function - Innovation Form

• Therefore, the log-likelihood function is

$$\log f(y_1, \dots, y_T) = \log f(y_1) + \sum_{t=2}^{T} \log f(y_t | y_{t-1}, \dots, y_1).$$

• Under the normality assumption, $f(y_t|y_{t-1},\cdots,1)$ is given by the normal distribution:

$$y_t|y_{t-1},\cdots,y_1 \sim \mathcal{N}_{\mathbb{R}}\Big(\mathbb{E}[y_t|y_{t-1},\cdots,y_1],\ Var(y_t|y_{t-1},\cdots,y_1)\Big).$$

- 1 5.1 Introduction
- 2 5.2 Autoregressive Model
- Appendix

1. AR(p) Model

• The AR(p) model is given by

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_n y_{t-n} + \epsilon_t.$$

• This expression can be rearranged as

$$y_t - \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} = \epsilon_t$$

$$y_t - \phi_1 L y_t + \phi_2 L^2 y_t + \dots + \phi_p L^p y_t = \epsilon_t$$

$$(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p) y_t = \epsilon_t$$

$$\phi(L) y_t = \epsilon_t.$$

2. Stationarity

- Suppose that all the p solutions of x from $\phi(x) = 0$ are real numbers.
- Then, if the p solutions are greater than one, y_t is stationary.
- Suppose that the p solutions include imaginary numbers.
- Then, if the p solutions are outside unit circle, y_t is stationary.

- The partial autocorrelation between y_t and y_{t-k} , denoted by $\phi_{k,k}$, is a measure of strength of the relationship between y_t and y_{t-k} after removing the influence of $y_{t-1}, \dots, y_{t-k+1}$.
- ullet In case of k=1, there is no intermediate period between y_t and y_{t-1} .
 - \Rightarrow The partial autocorrelation coefficient is equivalent to the autocorrelation.

$$\phi_{1,1} = \rho(1) = \frac{\gamma(1)}{\gamma(0)}$$

• In case of k=2, to obtain the partial autocorrelation between y_t and y_{t-2} we need to remove the influence of y_{t-1} .

$$\begin{pmatrix} 1 & \rho(1) \\ \rho(1) & 1 \end{pmatrix} \begin{pmatrix} \phi_{2,1} \\ \phi_{2,2} \end{pmatrix} = \begin{pmatrix} \rho(1) \\ \rho(2) \end{pmatrix}$$

• This matrix form corresponds to the following system of equations:

$$\phi_{2,1} + \rho(1)\phi_{2,2} = \rho(1),$$

$$\rho(1)\phi_{2,1} + \phi_{2,2} = \rho(2).$$

Solving the system, we have

$$\phi_{2,1} = \frac{\rho(1)[\rho(2) - 1]}{\rho(1)^2 - 1},$$

$$\phi_{2,2} = \frac{\rho(1)^2 - \rho(2)}{\rho(1)^2 - 1}.$$

• Again, in case of k=2,

$$\begin{pmatrix} 1 & \rho(1) \\ \rho(1) & 1 \end{pmatrix} \begin{pmatrix} \phi_{2,1} \\ \phi_{2,2} \end{pmatrix} = \begin{pmatrix} \rho(1) \\ \rho(2) \end{pmatrix}$$

$$\iff \begin{pmatrix} Corr(y_t, y_t) & Corr(y_t, y_{t-1}) \\ Corr(y_{t-1}, y_t) & Corr(y_{t-1}, y_{t-1}) \end{pmatrix} \begin{pmatrix} \phi_{2,1} \\ \phi_{2,2} \end{pmatrix} = \begin{pmatrix} Corr(y_t, y_{t-1}) \\ Corr(y_t, y_{t-2}) \end{pmatrix}$$

• Looking at this expression, we see that the partial autocorrelation coefficient $\phi_{2,2}$ is a measure of strength of the relationship between y_t and y_{t-2} after removing the inlfuence of y_{t-1} .

Generally, we can express

$$\begin{pmatrix} 1 & \rho(1) & \cdots & \rho(k-2) & \rho(k-1) \\ \rho(1) & 1 & \cdots & \rho(k-3) & \rho(k-2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho(k-2) & \rho(k-3) & \cdots & 1 & \rho(1) \\ \rho(k-1) & \rho(k-2) & \cdots & \rho(1) & 1 \end{pmatrix} \begin{pmatrix} \phi_{k,1} \\ \phi_{k,2} \\ \vdots \\ \phi_{k,k-1} \\ \phi_{k,k} \end{pmatrix} = \begin{pmatrix} \rho(1) \\ \rho(2) \\ \vdots \\ \rho(k-1) \\ \rho(k) \end{pmatrix}$$

• Using Cramer's rule, we obtain $\phi_{k,k}$:

$$\phi_{k,k} = \begin{pmatrix} 1 & \rho(1) & \cdots & \rho(k-2) & \rho(1) \\ \rho(1) & 1 & \cdots & \rho(k-3) & \rho(2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho(k-2) & \rho(k-3) & \cdots & 1 & \rho(k-1) \\ \rho(k-1) & \rho(k-2) & \cdots & \rho(1) & \rho(k) \end{pmatrix}$$

$$\frac{1}{\rho(1)} \quad \frac{\rho(1)}{1} \quad \frac{\rho(k-2)}{1} \quad \frac{\rho(k-2)}{1} \quad \frac{\rho(k-2)}{1} \quad \frac{\rho(k-2)}{1} \quad \frac{\rho(k-3)}{1} \quad \frac{\rho(k-2)}{1} \quad \frac{\rho(k-$$

- 1 5.1 Introduction
- 2 5.2 Autoregressive Model
- 3 Appendix

- The main difference between cross sectional and time series analysis is whether random sampling is possible or not.
 - In cross sectional analysis, we can randomly choose a sample.
 - \Rightarrow i's observation is independent of j's one.
 - ⇒ We can rely on the LLN, which requires the independence of observations each other.
 - In time series analysis, we can not take observations randomly.
 - \Rightarrow The onservation in 2021 is dependent on that in 2020.
 - \Rightarrow We can not rely on the LLN, so another rule is necessary to consider the asymptotic properties of the estimators.
 - ⇒ Ergodicity!

• The chapter 20 in Greene provides the definition of Ergodicity as follows:

Fefinition 20.3 Ergodicity

A storong stationary time-series process, $\{z_t\}_{t=-\infty}^{t=\infty}$, is ergodic if for any two bounded functions that map vectors in the a and b dimensional real vector spaces to real scalars, $f: \mathbb{R}^a \to \mathbb{R}$ and $g: \mathbb{R}^b \to \mathbb{R}$,

$$\lim_{k \to \infty} |\mathbb{E}[f(z_t, z_{t+1}, \dots, z_{t+a-1})g(z_{t+k}, z_{t+k+1}, \dots, z_{t+k+b-1})]|$$

$$= |\mathbb{E}[f(z_t, z_{t+1}, \dots, z_{t+a-1})]| \times |\mathbb{E}[g(z_{t+k}, z_{t+k+1}, \dots, z_{t+k+b-1})]|$$

• Remember that Two random variables X and Y are independent iff $\mathbb{P}(X=x,Y=y)=\mathbb{P}(X=x)\times\mathbb{P}(Y=y).$

- The definition states essentially that if events re separated far enough in time, then they are asymptotically independent.
- Then, we have the following:

Theorem 20.1 The Ergodic Theorem

If $\{z_t\}_{t=-\infty}^{t=\infty}$ is a time-series process that is strongly stationary and ergodic and $\mathbb{E}[|z_t|]$ is a finite constant, and if $\overline{z}_T = (1/T) \sum_{t=1}^T z_t$, then $\overline{z}_T \xrightarrow{a.s.} \mu$, where $\mu = \mathbb{E}[z_t]$. Note that the convergence is almost surely in probability or in mean square.

 What we have in the ergodic theorem is, for sums of dependent observations, a counterpart to the LLN which requires sums of independent observations.

• Theorem 20.1 is extended as follows.

Theorem 20.2 Ergodicity of Functions

If $\{z_t\}_{t=-\infty}^{t=\infty}$ is a time-series process that is strongly stationary and ergodic and if $y_t = f(\{z_t\})$ is a measurable function in the probability space that defines z_t , then y_t is also stationary and ergodic. Let $\{\mathbf{z_t}\}_{t=-\infty}^{t=\infty}$ define a $K \times 1$ vector valued stochastic process - each element of the vector is an ergodic and stationary series, and the characteristics of ergodicity and stationarity apply to the joint distribution of the elements of $\{\mathbf{z_t}\}_{t=-\infty}^{t=\infty}$. Then, the ergodic theorem applies to functions of $\{\mathbf{z_t}\}_{t=-\infty}^{t=\infty}$.

• Theorem 20.2 produces the results we need to characterize the least squares (and other) estimators.

• Consider the following model:

$$y = X\beta + \epsilon$$
,

where $oldsymbol{y}, oldsymbol{\epsilon} \in \mathbb{R}^T$, $oldsymbol{X} \in \mathcal{M}_{T imes K}(\mathbb{R})$ and $oldsymbol{eta} \in \mathbb{R}^K$.

• Then the OLS estimator is given by

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}(\boldsymbol{X}'\boldsymbol{Y})$$
$$= \boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}(\boldsymbol{X}'\boldsymbol{\epsilon})$$
$$= f(\boldsymbol{X}, \boldsymbol{\epsilon}),$$

which implies that the estimator is a function of random vectors X and ϵ .