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1. Stationarity

Let 41, -,y be time series data.

(a) Weak Stationarity:

E(yt) = M, vt € {17"' 7T}’
E[(ye — 1) (ye—r — p)] = (1), vie{l,---,T}and 7=0,1,2,--- .

@ Both of the first and second moments do not depend on time ¢.

@ The second moment depends on time difference 7, not time itself.
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1. Stationarity

(b) Strong Stationarity:

o Let f(Yiy, Yty -+ ,Yt,) be the joint distribution of vy, yry, -+, Yt, -

f(ytlaytz, T aytr) = f(yt1+‘l'7yt2+7" T 7yt7‘+7-)’ v(tlv e ’tr) € R" and V7 € N.

@ e.g.) The probability that the weather of 12/1, 2, 3. 4 is (sunny, cloudy, rainy, sunny) is
equal to the probability that the weather of 12/4, 5, 6, 7 is (sunny, cloudy, rainy, sunny).

@ All the moments are same for all 7.
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2. Ergodicity

@ As time difference between two data is large, the two data become independent.

® y1, -+ ,yr is said to be ergodic in mean when 7 converges in probability to E(y;), i.e.,

T

1 P

szt — E(y), as T — .
=1

@ Roughly speaking, it is a time series version of the Law of Large Numbers.
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3. Auto-covariance Function

@ The auto-covariance of y; and y;_, is

El(ye — 1) (ye—r — )] = (1), 7=0,1,2,---.

@ It has a property of symmetricity:

where
Y(=7) = E[(yt — 1) (Yegr — p)]-
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4. Auto-correlation Function

@ The auto-correlation is given by

(r) = Bl = —p]l _ ()
VVar(y)/Var(y—)  1(0)

e Note that for all ¢t € {1,--- T},

v(0) = E[(ye — 1) (ye — p)]
=E [(yt - M)Q]
= Var(y).
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5. Sample Mean

@ The sample mean is give by

@ Note that i is a consistent estimator of y; if the sample has a property of ergodicity.
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6. Sample Auto-covariance

@ The sample auto-covariance is given by
1 I
V() =7 > e — )y — ).

t=1

@ This is the empirical counterpart of the auto-covarince function:

(1) = E[(ye — 1) (We—r — 11)]-
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7. Correlogram

@ The correlogram (sample auto-correlation) is given by

sr) = 1) _ 7 Ziema e = D w=r = )
YO) F e — ) — )

@ This is the empirical counterpart of the auto-correlation function:

(1) _ Elly =) — )]
Y0)  /Var(y)\/Var(ye—r)

p(T) =
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8. Lag Operator

@ The lag operator L” is used for taking a lag of 7 periods:

LTyt:yt—Ta T:1727'”‘
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9. Likelihood Function - Innovation Form

@ Using the Bayes' rule, we have the joint density of yq, - ,yr as follows

f(yla to 7yT) = f(yT|yT—17 e 7y1)f(yT—17 e 7y1)
= flyrlyr—1,- - sy0) fyr—ilyr—2, - s y1) f(yr—2,- - ;1)

= fyrlyr—1,- - s y) fyr—1lyr—2, - sy1) - flyalyr) f (1)

T
= f) [ fwelye, - m).

t=2
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9. Likelihood Function - Innovation Form

@ Therefore, the log-likelihood function is

T
log f(y1, -+ »yr) =log f(y1) + > _log f(yilyi—1, -+ ,m1)-
t=2
@ Under the normality assumption, f(y¢|yt—1,--- ,1) is given by the normal distribution:

yt|yt—17"' yYyr ~ NR(E[?M%—L'“ 791]7 Var(yt‘yt—lu'” )3/1))‘
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1. AR(p) Model

e The AR(p) model is given by

Yt = O1Ys—1 + P2yt—2 + - + PpYi—p + €.

@ This expression can be rearranged as

Yt — Q1Yt—1 + P2yr—2 + -+ Opli—p = €
yr — o1 Ly + ¢2L2yt + o+ GpLPy; = €
(1= ¢1L — ¢ol® — -+ — ¢pLP)ys = €
(L)yr = €.
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2. Stationarity

Suppose that all the p solutions of = from ¢(z) = 0 are real numbers.

@ Then, if the p solutions are greater than one, y; is stationary.

Suppose that the p solutions include imaginary numbers.

@ Then, if the p solutions are outside unit circle, y; is stationary.
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3. Partial Autocorrelation Coefficient ¢y, 1,

@ The partial autocorrelation between y; and y;_, denoted by ¢y, 1, is a measure of strength

of the relationship between y; and y,_j after removing the influence of y¢—1, -, Y—k+1-

@ In case of k£ =1, there is no intermediate period between 1 and y;_1.

= The partial autocorrelation coefficient is equivalent to the autocorrelation.
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3. Partial Autocorrelation Coefficient ¢y, 1,

@ In case of k = 2, to obtain the partial autocorrelation between y; and y;_o we need to

remove the influence of y;_1.

p(l) 1 b2, p(2)
@ This matrix form corresponds to the following system of equations:

$2,1 + p(1)p2.2 = p(1),
p(1)p21 + P22 = p(2).
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3. Partial Autocorrelation Coefficient ¢y, 1,

@ Solving the system, we have

P21 = 02 —1
_p(1)* = p(2)
P22 =
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3. Partial Autocorrelation Coefficient ¢y, 1,

( 1 p<1>> (¢> _ (m)

p(l) 1 $2,2 p(2)

( Corr(yt, yt) Corr(ye, yi—1) ) (¢2,1> _ (COTT(ynyt—l))
Corr(yi—1,yt) Corr(ye—1,vyt—1) $2,2 Corr(ys-yi—2)

@ Looking at this expression, we see that the partial autocorrelation coefficient ¢ 5 is a

@ Again, in case of k =2,

measure of strength of the relationship between y; and y;_o after removing the inlfuence

of yi_1.
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3. Partial Autocorrelation Coefficient ¢y, 1,

@ Generally, we can express

1 p(1) - plk=2) p(k—1) Pr1 p(1)
p(1) 1 o pk=3) p(k—2) Pk p(2)
p(k—2) p(k=3) - 1 p(1) Prk—1 p(k—1)

p(k—1) p(k—=2) -~ p(1) 1 Phk p(k)
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@ Using Cramer's rule, we obtain ¢y, 1

1 p(1) p(k—2)  p(1)
p(1) 1 p(k=3)  p(2)
p(k—2) p(k—3) 1 p(k—1)
| p(k—1) p(k—2) p(1) p(k)
Okk =
1 p(1) p(k—2) p(k—1)
p(1) 1 p(k —3) p(k—2)
p(k—2) p(k—3) 1 p(1)
p(k—1) p(k—2) p(1) 1
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@ The main difference between cross sectional and time series analysis is whether random
sampling is possible or not.
@ In cross sectional analysis, we can randomly choose a sample.
= i's observation is independent of j's one.

= We can rely on the LLN, which requires the independence of observations each other.

e In time series analysis, we can not take observations randomly.
= The onservation in 2021 is dependent on that in 2020.
= We can not rely on the LLN, so another rule is necessary to consider the asymptotic
properties of the estimators.

= Ergodicity !
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@ The chapter 20 in Greene provides the definition of Ergodicity as follows:

Fefinition 20.3 Ergodicity
A storong stationary time-series process, {2 }i=°°,, is ergodic if for any two bounded

functions that map vectors in the a and b dimensional real vector spaces to real scalars,

f:R* > Randg:R" =R,

lim ‘E[f(zt,ztﬂy s azt+a—1)g(zt+kazt+k+1a s azt-i-k-i-b—l)”
k—o00
:\E[f(zt,ztﬂ, T ,Zt+a—1)]\ X ‘E[Q(zt+k7zt+k+la ce 7Zt+k+b71)”

@ Remember that Two random variables X and Y are independent iff

PX=zY=y) =PX=x)xP(Y =y).
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@ The definition states essentially that if events re separated far enough in time, then they
are asymptotically independent.

@ Then, we have the following:

Theorem 20.1 The Ergodic Theorem

If {2 }\=° is a time-series process that is strongly stationary and ergodic and E||z|] is a

finite constant, and if zp = (1/T) Y1_, 2, then Zr ~=5 i, where yu = E[z;]. Note that the

convergence is almost surely in probability or in mean square.

@ What we have in the ergodic theorem is, for sums of dependent observations, a

counterpart to the LLN which requires sums of independent observations.
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@ Theorem 20.1 is extended as follows.

Theorem 20.2 Ergodicity of Functions

If {2 }{=° is a time-series process that is strongly stationary and ergodic and if y; = f({z})
is a measurable function in the probability space that defines z;, then y, is also stationary and
ergodic. Let {z}{=>° define a K X 1 vector valued stochastic process - each element of the
vector is an ergodic and stationary series, and the characteristics of ergodicity and stationarity

apply to the joint distribution of the elements of {zy}\=>° . Then, the ergodic theorem applies

—00"

to functions of {z }{=>° .

@ Theorem 20.2 produces the results we need to characterize the least squares (and other)

estimators.
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@ Consider the following model:
y=XB+e,

where y,e € RT, X € Mryk(R) and 3 € RE.
@ Then the OLS estimator is given by
B=(X'X)1(X'Y)
=B+ (X'X) " (X'e)
= f(X,e),
which implies that the estimator is a function of random vectors X and e.

Ryo Sakamoto

Econometrics Il TA Session #9



	5.1 Introduction
	5.2 Autoregressive Model
	Appendix

