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Multiple Regression Model

Consider the following regression model:

yi = β1xi1 + · · ·+ βkxik + ui = xiβ + ui,

for i = 1, · · · , n, where u1, · · · , un are assumed to be mutually independently and

indentically distributed with mean zero and variance σ2,

xi = (xi1, · · · , xik) ∈ Rk

and

β =


β1
...

βk

 ∈ Rk.
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Multiple Regression Model

The stacked model is given by

y = Xβ + u,

where

y =


y1
...

yn

 ∈ Rn, X =


x1
...

xn

 ∈Mn×k(R), u =


u1
...

un

 ∈ Rn.

Throughout this section, we assume that the explanatory variables xi, i = 1, · · · , k are

fixed.
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Derivation of the OLS Estimator

Consider the following objective function:

S(β) = (y −Xβ)′(y −Xβ).

The OLS estimator is

β̂ = arg min
β

S(β).

Ryo Sakamoto

Econometrics II TA Session #1 6 / 44



Derivation and Small Sample Properties of OLSE Large Sample Properties of OLSE Appendix

Derivation of the OLS Estimator

The F.O.C. is

∂S(β̂)

∂β
= −2X ′y + 2X ′Xβ̂ = 0.

Solving the equation above, we have the OLS estimator:

β̂ = (X ′X)−1X ′y. (1)
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Derivation of the OLS Estimator

The S.O.C. is that

∂2S(β̂)

∂β∂β′

must be a positive definite matrix.

The differential coefficient is 2X ′X ∈Mk×k(R) which is positive definite since for any

vector a ∈ Rk such that a 6= 0,

a′(X ′X)a = (Xa)′Xa = z′z =

n∑
j=1

z2j > 0,

where z := Xa.
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Mean of the OLS Estimator (Unbiasedness)

To obtain the properties of the OLS estimator, we rewrite (1) as follows:

β̂ = (X ′X)−1X ′Y

= (X ′X)−1X ′(Xβ + u)

= β + (X ′X)−1X ′u. (2)

Taking the expectation on both sides of (2), we have

E(β̂) = E[β + (X ′X)−1X ′u]

= β + (X ′X)−1X ′E(u) = β,

because of E(u) = 0 by the assumption.
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Variance of the OLS Estimator

The variance of the OLS estimator is

V (β̂) = E
[
(β̂ − β)(β̂ − β)

]
= E

{
(X ′X)−1(X ′u)[(X ′X)−1(X ′u)]′

}
= E

[
(X ′X)−1X ′uu′X(X ′X)−1

]
= (X ′X)−1X ′E(uu′)X(X ′X)−1

= σ2(X ′X)−1.

The fifth equality comes from the assumption that ui is mutually independently and

identically distributed with mean zero and variance σ2, which implies that

E(u2i ) = σ2, ∀i and E(uiuj) = 0, ∀i 6= j.
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Gauss-Markov Theorem

The OLS estimator is a BLUE (best linear unbiased estimator), i.e., minimum variance

within the class of linear unbiased estimators.
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Proof

Consider another linear unbiased estimator β̃,

β̃ = Cy = C(Xβ + u) = CXβ + Cu, (3)

where C ∈Mk×n(R).

Taking the expectation of β̃, we obtain:

E(β̃) = CXβ + CE(u)

= CXβ.
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Since β̃ is unbiased, E(β̃) = β must be met, which implies

CX = Ik.

Substituting this into (3), we have

β̃ = CXβ + Cu = β + Cu.
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The variance of β̃ is

V (β̃) = E
[
(β̃ − β)(β̃ − β)′

]
= E(Cuu′C ′)

= CE(uu′)C ′

= σ2CC ′.

Now, let C = D + (X ′X)−1X ′, then

V (β̃) = σ2CC ′

= σ2
[
D + (X ′X)−1X ′

][
D + (X ′X)−1X ′

]′
Ryo Sakamoto
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Calculating CX, we have

CX =
[
D + (X ′X)−1X ′

]
X

= DX + Ik.

Since CX = Ik must be met (∵ unbiasedness of β̃), we have the following condition:

DX = 0 ∈Mk×k(R).
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Substituting this condition into the variance of β̃, we have

V (β̃) = σ2
[
D + (X ′X)−1X ′

][
D + (X ′X)−1X ′

]′
= σ2(X ′X)−1 + σ2DD′ + σ2(X ′X)−1(DX)′ + σ2DX(X ′X)−1

= V (β̂) + σ2DD′.

Thus, V (β̃)− V (β̂) is a positive definite matrix.

This implies V (β̃j)− V (β̂j) > 0 for all j ∈ {1, · · · , k}.

Therefore, the OLS estimator β̂ is a minimum variance (i.e., best) linear unbiased

estimator of β. (QED)
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Distribution of the OLS Estimator

So far, ui has not been assumed to follow a normal distribution.

However, we need the normality assumption to obtain the distribution of the OLS

estimator in the small sample.

Then, hereafter we assume

ui ∼ NR
(
0, σ2

)
⇒ u ∼ NRn

(
0, σ2In

)
.

Under normality assumption on the error term u, it is known that the distribution of the

OLS estimator is

β̂ ∼ NRk

(
β, σ2(X ′X)−1

)
.

Ryo Sakamoto

Econometrics II TA Session #1 17 / 44



Derivation and Small Sample Properties of OLSE Large Sample Properties of OLSE Appendix

Proof

The moment generating function of u is

φu(θu) := E
[

exp(θ′X)
]

= E

(
1

2
θ′uσ

2Inθu

)
= E

(
σ2

2
θ′uθu

)
,

which comes from u ∼ NRn(0, σ2In).
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The moment generating function of β̂ is

φβ(θβ) := E
[

exp(θ′ββ̂)
]

= E

{
exp

[
θ′ββ + θ′β(X ′X)−1X ′u

]}
= exp(θ′ββ) · E

{
exp

[
θ′β(X ′X)−1X ′u

]}
= exp(θ′ββ) · φu

(
θ′β(X ′X)−1X ′

)
= exp(θ′ββ) · exp

{
σ2

2

[
θ′β(X ′X)−1X ′

]′[
θ′β(X ′X)−1X ′

]}
= exp(θ′ββ) · exp

[
σ2

2
θ′β(X ′X)−1θβ

]
Ryo Sakamoto
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φβ(θβ) = exp(θ′ββ) · exp

[
σ2

2
θ′β(X ′X)−1θβ

]
= exp

[
θ′ββ +

1

2
θ′βσ

2(X ′X)−1θβ

]
.

This is equivalent to the normal distribution with mean β and variance σ2(X ′X)−1.

(QED)
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Distribution of the OLS Estimator

Taking the jth element of β̂, its distribution is

β̂j ∼ NR

(
βj , σ

2(X ′X)−1jj

)
⇐⇒ β̂j − βj√

σ2(X ′X)−1jj

∼ NR(0, 1),

where (X ′X)−1jj denotes the jth diagonal element of (X ′X)−1.

Replacing σ2 by its estimator s2, we have the following t distribution:

β̂j − βj√
s2(X ′X)−1jj

∼ t(n− k),

where t(n− k) denotes the t distribution with n− k degrees of freedom.
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Distribution of the OLS Estimator

s2 is taken as follows:

s2 =
1

n− k
(y −Xβ̂)′(y −Xβ̂),

which is an unbiased estimator of σ2.
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Properties of OLS

So far, we have looked at

how to derive the OLS estimator

small sample properties

how to derive the mean, variance and distribution of the OLS estimator

the Gauss-Markov theorem (efficiency)

In what follows, we will focus on the large sample properties of OLS estimator:

consistency

asymptotic normality
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Consistency and Asymptotic Normality

In Appendix, we can review the asymptotic theory.

Convergence in distribution

Convergence in probability

Chebyshev’s inequality

Slutsky’s theorem

Central limit theorem
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Consistency

In what follows, we assume that the explanatory variables are random.

In addition, we impose the exogeneity assumption E[u|X] = 0.

The error term is assumed to be

ui|xi ∼
(

0, σ2
)
⇒ u|X ∼

(
0, σ2In

)
.

Note that we do not need the normality assumption.

The OLS estimator is a consistent estimator, i.e., β̂
p−−−→

n→∞
β.
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Proof

The OLS estimator is

β̂ = β + (X ′X)−1X ′u

= β +

(
1

n
X ′X

)−1 1

n
X ′u

= β +

(
1

n

n∑
i=1

x′ixi

)−1 1

n

n∑
i=1

x′iui.

Ryo Sakamoto

Econometrics II TA Session #1 27 / 44



Derivation and Small Sample Properties of OLSE Large Sample Properties of OLSE Appendix

Proof

By the law of large numbers, we have

1

n

n∑
i=1

x′ixi
p−−−→

n→∞
E[x′ixi] =: Mxx ∈Mk×k(R),

1

n

n∑
i=1

x′iui
p−−−→

n→∞
E[x′iui].

Using the law of iterated expectation,

E[x′iui] = E[x′iE(ui|xi)] = 0.

Ryo Sakamoto

Econometrics II TA Session #1 28 / 44



Derivation and Small Sample Properties of OLSE Large Sample Properties of OLSE Appendix

Proof

By the Slutsky theorem, we have

β̂ = β +

(
1

n

n∑
i=1

x′ixi

)−1 1

n

n∑
i=1

x′iui

p−−−→
n→∞

β +M−1xx · 0 = β,

which concludes the proof. (QED)
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Asymptotic Normality

The asymptotic normality of the OLS estimator means

√
n(β̂ − β)

d−−−→
n→∞

NRn

(
0, σ2M−1xx

)
.
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Proof

Rewriting the expression of the OLS estimator yields

β̂ = β +

(
1

n

n∑
i=1

x′ixi

)−1 1

n

n∑
i=1

x′iui

⇐⇒ β̂ − β =

(
1

n

n∑
i=1

x′ixi

)−1 1

n

n∑
i=1

x′iui

⇐⇒
√
n(β̂ − β) =

(
1

n

n∑
i=1

x′ixi

)−1√n
n

n∑
i=1

x′iui.
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By the law of large numbers and the Slutsky’s theorem, we have(
1

n

n∑
i=1

x′ixi

)−1
p−−−→

n→∞
M−1xx .

By the central limit theorem, we have

√
n

(
1

n

n∑
i=1

x′iui

)
d−−−→

n→∞
NRk

(
0, V (x′iui)

)
.
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V (x′iui) = E
[
V (x′iui|xi)

]
+ V

[
E(x′iui|xi)

]
= E

[
x′iV (ui|xi)xi

]
= σ2E

[
x′ixi

]
= σ2Mxx.

Then, we have

√
n

(
1

n

n∑
i=1

x′iui

)
d−−−→

n→∞
NRk

(
0, σ2Mxx

)
.
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By the Slutsky’s theorem, we have(
1

n

n∑
i=1

x′ixi

)−1√
n

(
1

n

n∑
i=1

x′iui

)
d−−−→

n→∞
M−1xx ·B,

where

B ∼ NRk

(
0, σ2Mxx

)
.
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Note that

B ∼ NRk

(
0, σ2Mxx

)
⇒ M−1xx ·B ∼ NRk

(
0, σ2M−1xx

)
.

Hence, we have

√
n(β̂ − β)

d−−−→
n→∞

NRk

(
0, σ2M−1xx

)
.

which concludes the proof. (QED)
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Moment Generating Function (積率母関数)

X is a random variable and X ∼ NR(µ, σ2).

Then, the moment generating function is given by

M(θ) := E[exp(θX)]

= exp

(
µθ +

1

2
σ2θ

)
.
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Moment Generating Function (積率母関数)

X is a random vector and X ∼ NRn(µ, Σ).

Then, the moment generating function is given by

φ(θ) := E[exp(θ′X)]

= exp

(
θ′µ+

1

2
θ′Σθ

)
.
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Convergence in Distribution (分布収束)

A series of random variables X1, · · · , Xn, · · · , have distribution functions

F1, · · · , Fn, · · · , respectively.

If

lim
n→∞

Fn = F,

then we say that a series of random variables X1, X2, · · · converges to F in distribution.
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Convergence in Probability (確率収束)

Let {Xn}, n = 1, 2, · · · be a sequence of random variables.

If

lim
n→∞

P (|Xn − θ| < ε) = 1, ∀ε > 0,

then we way that {Xn} converges to θ in probability.

We denote as Xn
p−−−→

n→∞
θ.
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Chebyshev’s Inequality

Let g : Rn → R.

For g(X) ≥ 0,

P
[
g(X) ≥ k

]
≤ E[g(X)]

k

where k is a positive constant.
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Slutsky’s Theorem

Let Xn and Yn be random variables such that Xn
p−−−→

n→∞
c and Yn

p−−−→
n→∞

d.

Then,

1 Xn + Yn
p−−−−→

n→∞
c+ d

2 XnYn
p−−−−→

n→∞
cd

3 Xn/Yn
p−−−−→

n→∞
c/d for d 6= 0

4 g(Xn)
p−−−−→

n→∞
g(c)
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Central Limit Theorem: Univariate case

X1, · · · , Xn ∈ R are mutually independent and identically distributed as Xi ∼ (µ, σ2).

Then,

X − E(X)√
V (X)

=
X − µ

σ√
n

d−−−→
n→∞

NR(0, 1),

which implies

√
n(X − µ) =

1√
n

n∑
i=1

(Xi − µ)
d−−−→

n→∞
NR(0, σ2),

where X := 1
n

∑n
i=1Xi.
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Central Limit Theorem: Multivariate case

X1, · · · , Xn ∈ Rk are mutually independently and identically distributed as Xi ∼ (µ,Σ).

Then,

1√
n

n∑
i=1

(Xi − µ)
d−−−→

n→∞
NRk(0,Σ).
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